印度競爭委員會(Competition Commission of India, CCI)於2022年10月19日以違反競爭法(Competition Act)第3條及第4條規定,涉嫌協議限制競爭與濫用市場地位,分別對兩家網路旅行社(online travel agents, OTAs)—MakeMyTrip India Private Limited和Ibibo Group Private Limited(合稱MMT-Go)裁罰22.348億及16.888億印度盧比(約為2600萬和2029萬美金),並要求MMT-Go修改與合作飯店之間的「廣義平價義務條款」,CCI認為「廣義平價義務條款」可能會限制競爭,具有市場地位的業者施行可能造成壟斷,需要個案認定是否違反競爭法。MMT-Go向國家公司法上訴法院(National Company Law Appellate Tribunal, NCLAT)提起救濟,NCLAT於2023年2月23日宣布將對CCI的裁罰進行審理,預計於4月11日舉行庭審。
「平價義務條款」在OTAs和合作飯店間相當常見,是為了要解決搭便車問題,防止飯店從中獲取不公平利益,而平價義務條款分成「狹義」與「廣義」。「狹義平價義務條款」禁止飯店在飯店自身網站以更好的價格與條件進行銷售,因只限制飯店在本身銷售管道的條件,並不影響OTAs之間的競爭。而「廣義平價義務條款」則禁止飯店在其他銷售管道以更好的價格和條件進行銷售,此將減少OTAs之間的競爭。當具有市場地位的OTAs與飯店簽訂「廣義平價義務條款」,因其更為低廉的價格與市場地位,其競爭對手無法與之公平競爭,可能產生壟斷。
此外,歐盟可能有同樣的看法,歐盟委員會於2022年5月新修訂「垂直集體豁免規則」(Vertical Block Exemption Regulation, VBER)將廣義平價義務條款從豁免範圍中刪除,但仍豁免狹義平價義務條款。因為廣義平價義務條款可能限制競爭或造成壟斷,印度與歐盟對於廣義平價義務條款已經做出限制,可能是未來競爭法的國際趨勢,可以作為我國未來相關法規調適之參考。
歐盟在2014針對行動健康(mHealth)綠皮書進行公共諮詢,要求相關之人針對mHealth發展的十一個議題提出意見。進行的時間從2014年4月10日至7月10日,歐盟在2015年1月12日公布諮詢結果,總計有211位參與者回覆,其中71%由組織機構回覆,29%則為個人意見回覆。 在諮詢報告中所提列之十一項議題包含:1. 健康資料的安全性、2. 巨量資料、3. 於目前歐盟法規下的適用情況、4. 病人安全性與資訊透明化、5. mHealth在醫療照護系統的定位以及平等使用、6. 互通性、7. 補助機制、8. 責任歸屬、9. 研究與發展、10.國際合作、11. mHealth市場發展性等。 針對上述議題,諮詢報告提出幾項認為未來發展mHealth時面臨之問題以及應該如何因應。包含: 1. 多數認為應建立隱私安全保護工具,包括資料加密以及驗證機制。逾半數的人認為應該執行資料保護,將法規適用於mHealth相關器材。2. 近半數的人要求病人安全以及資料的透明性,因此,應可建立制度使這些mHealth APP經品質認證通過後上市。3. 對於mHealth的業者而言,認為需要有清楚的法規架構、互通性以及共通的品質標準建立,才能有助於產業的發展。4.透過立法、自律機制以及指導原則的建立,使mHealth APP所衍生之問題能有規範可供解決。5. 部分認為mHealth的成本效益需要有更多的數據證據分析來評估。例如,在美歐國家曾進行一項測試,mHealth可以減少50-60%肺部慢性疾病病人住院以及再次入院的比例。此外,mHealth亦可減少25%老人照護的成本支出。6. 歐盟以及各個國家應該確認mHealth的互通性,基於持續性的照護以及研究目的,能有共通可相互使用的電子醫療紀錄。7. 其次則是應該促使開放標準,並有醫療專家以及使用者積極參與使mHealth能完備進行。 在歐盟此的mHealth公共諮詢報告中,已提出未來可能面臨的問題,歐盟嘗試以既有之指令規範檢視mHealth衍生之問題是否能夠加以因應解決,其主要目的仍在於讓消費者能安全使用,同時亦希望能促進產業開發與進步,其後續發展值得觀察,同時亦可提供相關業者開發時之參考。
歐洲法院針對國家安全數據保留政策之隱私權問題作出裁決歐洲法院於2016年12月21日針對英國2014年數據保留及調查權力法案(Data Retention and Investigatory Powers Act 2014;簡稱DRIPA)作出裁決,其認為該法案授權政府機關得要求電信營運商「普遍性及無區別性」保留使用戶之流量及位置數據,並應政府機關指示提供,違反歐盟電子通訊隱私指令(2002/58/EC;E-Privacy Directive),與歐洲聯盟基本權利憲章第7條私生活與家庭生活受尊重之權利,及第8條個人資料受保護之權利。 詳言之,歐洲法院認為,歐盟電子通訊隱私指令15(1),雖承認會員國在保障國家安全、國防、公共安全及預防、調查、偵查及起訴刑事犯罪或未經授權使用電子通信系統之行為下,可立法採取適當措施予以限制電子通訊之隱私權,但由於流量及位置數據是可以藉由保留數據精確得出個人私生活,並據以建立個人簡介,因此,倘允許「普遍性及無區別性」之要求保留數據,對於歐洲聯盟基本權利憲章是非常深遠與特別嚴重之侵害,將導致個人未受任何通知,政府即可要求電信營運商保留數據,使民眾之私生活處於不斷被監視之中。 據此,該裁決進一步指出,立法上須具備特定標準及客觀證據,足以證明個人或其數據可能與重大刑事犯罪或恐怖主義有關連性,且保留數據行為具有打擊重大犯罪或預防嚴重公共安全風險之利益,方可限縮歐洲聯盟基本權利憲章所規定之基本權利,且應採取適當保護措施,並確保保留數據於保存期間結束後能徹底且不可復原之銷毀。 然而,歐洲法院之此項裁決見解,在英國脫離歐盟已成定局之情形下,其遵循態度與影響力為何,尚不可知,甚且對於其國內於12月實行,以賦予政府更大權力監控民眾之調查權力法案(Investigatory Powers Act. 2016)之衝擊程度為何,亦值得後續觀察。
中國大陸科技部開始進行首批國家科技成果轉移轉化示範區建設計畫於2016年10月14日,中國大陸科技部為落實國務院於5月9日發布之《促進科技成果轉移轉化行動方案》中,有關大力推動地方科技成果轉移轉化,並開展區域性科技成果轉移轉化試點示範的要求,開始啟動在河北以及寧波,兩個科技成果轉移轉化示範區的建設計畫。 中國大陸推動國家科技成果轉移轉化示範區之目的在於推動科技成果轉移轉化工作,以期能有助於完善區域科技成果轉化政策環境,並且提升區域創新之能力;示範區的建設重點將在於完善科技成果轉化服務體系、建設科技成果產業化載體、開展政策先行先試等方面開展工作,進行地方的創新驅動發展。 為此,中國大陸科技部並印發了《科技部關於建設河北•京南國家科技成果轉移轉化示範區的函》、《科技部關於建設寧波國家科技成果轉移轉化示範區的函》兩份政策文件,其中河北•京南示範區的重點在於配合北京、天津,以及河北的區域協同發展,充分發揮跨區域輻射帶動作用,並且承接北京及天津的創新要素外溢轉移,以及與河北產業創新需求進行對接。而寧波示範區將則以科技成果轉化對產業和企業創新發展的對接為核心戰略,發展以企業為主體的科技成果轉移轉化示範區域。並以這兩個示範區的測試來探索模式、累積經驗。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。