美國聯邦貿易委員會(FTC)持續開鍘違約揭露用戶個資的業者

美國聯邦貿易委員會(Federal Trade Commission,FTC)根據《健康違規通知規則》(Health Breach Notification Rule,HBNR),於2023年2月1日和3月2日分別對GoodRx Holdings Inc.公司和BetterHelp, Inc.公司提出擬議命令(Proposed order)。擬議命令指經由行政機關調查案件後提出的改善建議,且經聯邦法院批准後對被調查公司生效。這兩件案例是FTC於2021年後擴大《健康違規通知規則》適用範圍從傳統的健康產業及於網路行業後的首次執法。GoodRx Holdings Inc.公司提供藥物資訊平台與折扣訊息;而BetterHelp, Inc.公司提供遠距醫療服務。兩者在2017到2020年間均向他們的消費者聲明,將妥善保護所蒐集之個資,然而卻轉手將取得個資揭露給Facebook、Snapchat和Google等第三方公司,用來進行目標式廣告的投放。

FTC對GoodRx的擬議命令要求其停止向第三方揭露使用者的個人資料,並處以支付150萬美元的罰鍰。對BetterHelp, Inc.的命令除要求其停止共享使用者的個人資料外,更要求BetterHelp, Inc.向網站的使用者進行退款,退款總額上限高達780萬美元。FTC在擬議命令中建議:涉及敏感性健康資料的事業負責人,除了需要重新檢視目前持有資料的隱私和安全性外,最好能建立一套完整的資料管理流程。流程包括對當事人充分說明蒐集利用目的、取得當事人完整的知情同意、制定完整的個人資料管理及保存銷毀程序、限制員工對資料的存取權限等等。最後也最重要的是要「信守承諾」,這兩個案例中的業者都是違反了自己當初對使用者的承諾,最終才導致被處罰的結果。

相關連結
你可能會想參加
※ 美國聯邦貿易委員會(FTC)持續開鍘違約揭露用戶個資的業者, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9006&no=16&tp=1 (最後瀏覽日:2025/08/21)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

日本修訂《教育資訊安全政策指引》以建構安全的校園ICT環境

  日本文部科學省於2022年3月發布「教育資訊安全政策指引」(教育情報セキュリティポリシーに関するガイドライン)修訂版本,該指引於2017年10月訂定,主要希望能作為各教育委員會或學校作成或修正資訊安全政策時的參考,本次修訂則是希望能具體、明確化之前的指引內容。本次修訂主要內容如下。 (1)增加校務用裝置安全措施的詳細說明: 充實「以風險為基礎的認證」(リスクベース認証)、「異常活動檢測」(ふるまい検知)、「惡意軟體之措施」(マルウェア対策)、「加密」(暗号化)、「單一登入的有效性」(SSOの有効性)等校務用裝置安全措施內容敘述。 (2)明確敘述如何實施網路隔離與控制存取權的相關措施: 對於校務用裝置實施網路隔離措施,並將網路分成校務系統或學習系統等不同系統,若運用精簡型電腦技術(シンクライアント技術)則可於同一裝置執行網路隔離。另外,針對校務用裝置攜入、攜出管理執行紀錄,並依實務運作調整控制存取權措施,例如安全侵害影響輕微者則可放寬限制以減輕管理者負擔。

美國參議員提案規範物聯網設備之資安漏洞

  美國參議員2017年08月01日提案立法,要求提供給美國政府的物聯網網路連結設備,須符合產業資訊安全標準,同時規範設備供應商,提供之設備必須可持續更新,不得含有無法更改參數的設定與不得具有任何已知安全漏洞。兩黨皆有參與提案參議員,共和黨為Cory Gardner和Steve Daines,以及民主黨的Mark Warner和Ron Wyden。   由於物聯網連結數持續成長,與物聯網相連的裝置與感應器,預計在2020年會超過200億台裝置,相關裝置的資料蒐集與傳輸,同時影響消費者與產業。當這些裝置在出廠時若預設無法更改的參數,即預設固定程式無法更新,則該裝置連接物聯網時,會因裝置無法更新程式,而可能產生資安漏洞,進而影響物聯網上其它連結設備之安全性。   2016至今,物聯網相關設備已被惡意阻斷服務攻擊(DDOS)影響相關網站、伺服器以及網路基礎設施提供者。   Warner等4位參議員提出的〈2017年物聯網資安改進法〉(Internet of Things (IoT) Cybersecurity Improvement Act of 2017)草案,主要關注: 聯邦政府採購的物聯網相關設備,須可持續更新、符合產業標準、不含無法更改內建參數的設定、以及不含已知安全漏洞。 行政管理和預算局(Direct the Office of Management and Budget ,OMB),須發展可供替代網路級(network-level)資安設備以供限制性資料處理。 國土安全部的國家保護和計畫局(National Protection and Programs Directorate)須向提供連線設備予聯邦政府的承包商,發布整合性的資安漏洞揭露指導原則。 免除資安研究人員基於誠實信用研究時,所揭露與資安漏洞有關之法規責任。 要求所有執行機構清點所有連結物聯網的設備。

新加坡宣布啟動「無形資產轉化」指導計畫,以協助企業更好地利用無形資產

新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2023年2月16日宣布啟動「無形資產轉化」(Mentorship for Intangible Asset Transformation (MINT) Programme)指導計畫(簡稱MINT計畫)。MINT計畫為世界智慧財產權組織(World Intellectual Property Organization, WIPO)與IPOS的合作項目,並得到了新加坡科技與研究局(Agency for Science, Technology and Research, A*STAR)、新加坡企業發展局(Enterprise Singapore, Enterprise SG)和新加坡工商聯合總會(Singapore Business Federation, SBF)的支持。根據此計畫,企業將得到由WIPO於新加坡當地及國際所動員專家之為期四個月的一對一指導,以及下述機會,以使其可更好地發揮無形資產價值,諸如進行技術授權、讓與,或設質、抵押等融資行為: (1)參與WIPO的實體及線上遠距課程及IPOS的工作坊,以及使用實用工具和資源,如WIPO Academy所研發學習模組的機會; (2)同儕間的交流及增進人脈的機會; (3)參與國際項目的獨家機會。 據WIPO智慧財產權和創新生態系統部門(IP and Innovation Ecosystems Sector)助理署長Marco Alemán所稱,隨著無形經濟的興起,智慧財產的策略性管理對於無形資產密集型企業而言十分重要。在與其他頂尖的智慧財產權與商業管理專家的合作下,WIPO和IPOS將與參與此計畫的新加坡企業密切合作,以求可透過對於智慧財產權的策略性使用,使其業務量逐步規模成長。 MINT計畫之開放申請期限截止於2023年3月13日,並於2023年4月初正式開始;前述關於學習、交流機會之更具體內容,後續可持續觀察。

TOP