拜登政府宣布採取促進負責任AI創新之新行動,以保護美國人民權利與安全

拜登政府於2023年5月4日宣布將採取促進負責任AI創新之新行動,表示公司於部署或公開其產品前,應致力於降低AI風險,並強調風險管理與保障措施的重要性,以防止AI對個人與社會造成潛在危害。此外,拜登總統於2月簽署「透過聯邦政府進一步推動種族平等和支持弱勢群體」行政命令(Executive Order on Further Advancing Racial Equity and Support for Underserved Communities Through The Federal Government),指示聯邦政府機關在設計和使用AI等新技術時,應避免偏見,並保護公眾免受演算法歧視。促進負責任AI創新之新行動包括:

一、投資負責任AI的研發
美國國家科學基金會(National Science Foundation)宣布撥款1.4億美元以啟動7個新的國家AI研究所,未來全美將有25個國家級AI研究所。除有助於促進公私部門之間合作外,將強化AI研發基礎設施、支持多元化AI勞動力發展,及推動氣候、農業、能源、公共衛生、教育與資安等關鍵領域之突破。

二、公開評估現有的生成式AI系統(generative AI systems)
Anthropic、Google、Hugging Face、微軟、NVIDIA、OpenAI和Stability AI等領先AI開發商將參與AI系統獨立公開評估,以評估其模型是否符合AI權利法案藍圖(Blueprint for an AI Bill of Rights),及AI風險管理框架(AI Risk Management Framework)所提出之原則與實踐,並使企業及開發人員能就所發現問題,進一步採取解決措施。

三、提出政策引導聯邦政府減輕AI風險及提升AI利用機會
美國行政管理預算局(Office of Management and Budget)宣布,將於2023年夏季發布有關聯邦政府機關各部門使用AI系統之政策指引草案,並徵詢公眾意見。

相關連結
※ 拜登政府宣布採取促進負責任AI創新之新行動,以保護美國人民權利與安全, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9008&no=57&tp=1 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
美國新發布加強軍商二用科技產品管理行動

  美國政府近年來為預備恐怖活動積極部署國家安全相關措施,包括運用出口管理規則(Export Administration Regulations)監控軍商二用技術及產品(dual-use items)之輸出;然而在維護國家安全的同時,美國仍然希望能持續鞏固其經濟及技術領先地位,以及避免全球高科技及市場遭到稀釋。美國總統因此於今(2008)年初,提出一系列有關軍商二用出口管制之行政新措施,欲藉此強化軍商二用出口管制制度(dual-use export control system)。其主要目標如下: (1)適當管制外國終端用戶(Foreign End-Users):美國政策作法是,未來軍商二用出口管制制度將要著重在美國高科技產品外國終端用戶之管理,除了保持其拒絕將敏感性科技輸給武器擴散份子、國際恐怖分子和習慣進行違背美國國家安全及外交政策與利益之國家對象之宗旨外,美國一方面將擴大受管制實體清單(Entity List)對象範圍,嚴格審查曾從事違背美國國家安全和外交政策及利益活動之外國夥伴;另方面,美國則將妥善使用所謂正當使用者計畫(Validated End User(VEU) program),免除這些受信賴之使用對象在輸出產品時受制於嚴格的出口申請程序。例如港商Manufacturing International Corporation(SMIC)最近即被納入VEU初始清單。 (2)增進國家競爭能力:美國將以維持經濟競爭力和創新研發為目標,建立一道檢討受管制軍商二用標的之常規程序,藉此重新評估並適時修正商業控制清單(Commerce Control List)所列產品及對象。 (3)透明化:為求達到資訊公開、共同促進國家安全及競爭之目的,美國商業部還會在網站上公開受到高度審查之外國夥伴清單。   最後,美國行政主管機關亦表示,為了有利於行政機關有效執行國家軍商二用出口管制政策,高度支持透過出口管理法(Export Administration Act)修正之再授權,更新違法之刑罰規定,並提升行政機關之執行權限。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國參議院通過《兒童網路隱私保護法》與《兒童網路安全法》,有望加強兒少網路安全保護力道

在數位時代,兒童及青少年長時間使用網際網路已成為生活常態,然而,兒少在高度使用社群媒體的同時,也透過演算法大量獲取諸如飲食失調、自殘等「有毒內容」(toxic content)。在享受網路便利性的同時,兒少也面臨遭受騷擾、霸凌,被迫轉學甚至輕生等困境,心理健康面臨危機。為解決前揭問題,美國參議院於2024年7月30日通過《兒童網路隱私保護法》(Children’s Online Privacy Protection Act, COPPA)修正法案及《兒童網路安全法》(Kids Online Safety Act, KOSA)之立法,加強兒少網路安全之保護。 COPPA早於1998年制定,並於2000年開始施行,該法案對於網路營運商蒐集未滿13歲兒童之個人資料相關隱私政策訂有規範,惟自訂定後迄今約25年,均未因應時代變遷做出調整,終於在本次會期提出修正草案。另KOSA之立法重點,則在於要求網路平台業者對兒童預設提供最高強度隱私設定,並建立控制措施,提供父母保護子女及認知到有害行為的機制,課予網路平台業者預防及減輕兒童陷於特定危險(如接收宣傳有毒內容之廣告)之義務等。此二法案經參議院投票通過後,合併為一案送交眾議院審核,重點說明如下: 1.將網路隱私保護主體擴張至未滿13歲之兒童及未滿17歲之青少年(下稱兒少),禁止網路平台業者在未經兒少使用者同意情況下,蒐集其個人資料。 2.禁止網路平台業者對兒少投放定向廣告(targeted advertising)。 3.為保護「合理可能會使用(reasonably likely to be)」網路平台的兒少,調整法案適用的「實際認知(actual knowledge)」標準,將適用範圍擴及至「合理可能被兒少使用(reasonably likely to be used)」的網路平台。 4.建立「清除鈕(eraser button)」機制,使兒少及其父母得以要求網路平台業者在技術可行情況下,刪除自兒少所蒐集之個人資料。 5.要求商務部(the Secretary of Commerce)於新法頒布後180日內,應成立並召集兒童網路安全會議(Kids Online Safety Council),進行包含識別網路平台對兒少造成危害之風險,提出相關評估、預防及減輕危害之建議措施及方法、進行與網路對兒少造成危害相關主題之研究等業務。 觀本次可謂美國對於兒少網路保護之重大進展,惟此法案後續是否能順利提請總統簽署成法,正式具約束效力,仍須持續關注眾議院未來動向。

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

TOP