OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告

2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。

《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。

《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。

相關連結
你可能會想參加
※ OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9016&no=57&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢

日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。 本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下: 1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。 2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。 3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。 本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

美國FTC修正廣告使用推薦與見證指南

  美國聯邦交易委員會(Federal Trade Commission,FTC)於2009年10月5日公佈了新修正的「廣告使用推薦與見證指南(Guides Concerning the Use of Endorsements and Testimonials in Advertising)」,這是該指南自1980年制定以來第一次的更新,並於今年12月1日起生效。此次修訂特別針對商品服務使用心得做出規範,規範亦適用於社交媒體(如Facebook、Twitter及各種類型的部落格等具互動性的媒體)中之心得分享,未來在社交媒體對商品或服務所做出的各種評論,都有可能成為FTC管制的對象。     在社交媒體中所傳遞之商品心得訊息,特別是名人(在該領域分享心得出名者)所分享之訊息,對於網路使用者或消費者之影響力甚大,甚至會改變其是否選擇消費該商品或服務之意願,但其真實性卻未必有相當之保障。有鑑於此,FTC於新修正之指南中即對於心得分享之訊息作出相應規範,重點如下: 1.心得分享者若由商品或服務提供者處受有金錢或相當程度的利益給付,即非單純之心得分享,而有與廣告相同之性質。因此若有虛偽不實陳述的狀況,亦視為是不實廣告。 2.心得分享者必須揭露其與商品或服務提供者的利益關係,使其他消費者明瞭。 3.廣告中若有引用研究結果,而該研究機構為該公司所贊助時,廣告中必須揭露兩者的利益關係。 4.指南同時適用於談話性節目以及社交媒體上所為之心得分享。 而違反上述規定者,可能會依美國聯邦交易委員會法第5條(FTC Act Sec.5)之相關規定每次最高得處以1萬1千美元罰鍰。     此規定之公布引起了部落客(部落格使用者)之質疑,因此FTC廣告實務科(The Division of advertising Practices)之副科長Richard Cleland特別對此做出澄清,其指出:「FTC不會立刻處以罰鍰,也並非所有個案均嚴重至須處以罰鍰。較有可能的作法是,先以警告函警告違規的部落客。且FTC無權對違反FTC法案的行為直接處以罰鍰,若事態嚴重,則FTC會將案件移送地方法院,由法院做出各種處斷,最重可至罰鍰。」     此一指南的約束,固然提供了消費者分辨廣告與心得分享的方式,但是關於更細部的操作,例如何時可認為部落客與商品及服務業者有利益關係,仍有待實務的累積。

美國為加強聯邦補助生物科研之安全性而提出新規範

TOP