美國歐盟貿易和技術委員會發布第四次聯合聲明,強化高科技技術及貿易安全合作

美國歐盟貿易和技術委員會(Trade and Technology Council,簡稱TTC)第四次部長級會議於2023年5月31日發布聯合聲明。TTC繼續作為美國和歐盟對俄羅斯在烏克蘭戰爭中協調及有效反應的平台,處理包括與制裁相關的出口限制、打擊外國資訊操縱和干擾,以及破壞人權並威脅到當事國及第三國民主制度的運作和社會福祉等議題。

本次TTC聯合聲明之五大議題重點介紹如下:

(1)強化跨大西洋新興技術合作以實現美歐共同領導:包括監控與衡量現有和新出現的人工智慧風險;發展智慧電網下智慧移動標準及互通性(Interoperability);提升半導體供應鏈的合作,包括鼓勵研發、資訊共享;建立工作小組共同處理量子技術問題。

(2)促進貿易及投資的永續性與新機會:乾淨能源補助;避免關鍵礦物供應受地緣政治影響;藉由數位工具提升貿易便捷的合作;相互承認醫藥品製造實務作法等。

(3)貿易、安全和經濟繁榮:出口管制與制裁相關出口限制的合作;交換對於與國安風險有關的特定敏感技術及關鍵設施投資審查的看法;重視對外投資管制,以保護敏感技術不流於對國際和平與安全有疑慮的用途;討論非市場政策與實務、及經濟脅迫(Coercion)的威脅與挑戰。

(4)連結性(Connectivity)和數位基礎設施:加速合作發展6G無線通訊系統;國際連通性與海底電纜計畫。

(5)在不斷變化的地緣政治數位環境中捍衛人權和價值觀:建構具透明性與可問責之線上平台;處理在第三國進行外國資料操縱與干預議題。

TTC將透過各工作小組,持續關注、研究上述議題的發展,並預計於2023年底於美國再次召開會議,檢視合作的成果。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國歐盟貿易和技術委員會發布第四次聯合聲明,強化高科技技術及貿易安全合作, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9019&no=57&tp=1 (最後瀏覽日:2025/11/19)
引註此篇文章
你可能還會想看
歐洲藥物管理局(EMA)加強與歐洲毒品與毒癮監控中心(EMCDDA)於精神性影響藥物和藥物濫用上的資訊交換合作

  2010年藥物主動監視法規(pharmacovigilance legislation)要求EMA和EMCDDA必須加強在藥物產品濫用(包含不合法藥品)的資訊交換合作關係,是以,EMA和EMCDDA於今年九月初於葡萄牙里斯本相互簽署了修訂工作協議(amended working arrangement),約定在新型精神性影響藥物與藥物濫用的面向上,加強相互間的資訊交流合作。   於EMA和EMCDDA所簽訂的修正工作協議中,雙方約定就下列領域深化資訊交換: 1.雙方需各自依照歐盟執委會2005/387/JHA決議和歐盟1235/2010號法規第28c(2)條,對於所擁有之新型精神性影響藥物與藥物濫用(包含不合法藥品)資訊進行交換合作; 2.資訊交換需透過通常基準的報告形式由EMCDDA送至EMA,並含括有關於藥物產品濫用、不合法藥物,以及新型精神性影響物質等相關資訊; 3.EMA必須通知EMCDDA有關於藥物產品濫用的有效導因(validated signals),同時,EMA必須提供EMCDDA有關於藥物產品濫用和新型精神性影響藥品市場核准狀況的細部資訊; 4.EMA對於選定藥物產品之風險管理計畫的界定,可考量是否需先行與EMCDDA作諮詢意見交換; 5.EMA和EMCDDA在歐盟執委會2005/387/JHA決議和歐盟1235/2010號法規第28c(2)條所設基礎的合作模式下,必須要特別注意確保人類或動物健康照護並無惡化的情事,同時應確保科學建議之潛在衝突於前階段將會被界定與管理; 6.EMA和EMCDDA兩者間諮詢的進行,必須避免非關於新型精神性影響物質風險評估之科學建議的潛在衝突; 7.對於任何額外合作計畫的執行,必須考量EMA和EMCDDA兩者的例行性工作規劃; 8.對於特定計畫需要額外資源時,必須經由EMA和EMCDDA共同同意,並將同意文件附於現階段的工作協議中; 9.EMA和EMCDDA可就其各自舉辦的會議相互邀請對方,並邀請對該會議有興趣的其他團體參與; 10.對於EMA和EMCDDA間實際的合作面向,將在工作協議既定架構下繼續發展。   除了前述的適用範圍外,EMA和EMCDDA的修訂工作協議,亦有就相互諮詢和秘密資訊等領域作出約定,以確保資訊交換係在符合雙方需求與不侵害個人基本權利的情況下進行。有鑑於EMA和EMCDDA希冀藉由資源互補的強化約定,來彌補自身於精神性影響藥物和藥物濫用領域的資訊不足缺陷,是否我國在相關醫療、藥品管制或是藥品商業化資訊需有跨機關的整合機制,以促使我國在醫療、醫藥資訊交換與流通,在不侵害個人基本權利的情況下,能夠發揮互益效用,則是我國有關單位必須審慎思考的問題。

紐西蘭內政部發布新版VASP指引,因應虛擬資產轉帳納入監管

紐西蘭內政部於2024年7月25日發布新版洗錢防制與打擊資助恐怖主義(Anti-Money Laundering and Countering Financing of Terrorism, 以下均簡稱AML/ CFT)指引(下稱指引),指導虛擬資產服務提供者(virtual asset service providers, 下稱VASPs)遵循虛擬資產交易行為準則與注意事項。該國有關AML/ CFT之規定係以多項規則與行為指引構成,且應技術、產業與國際標準之變革持續調整既有框架。本次指引更新係為配合AML/ CFT法(AML/ CFT Act 2009)及其規則之修正與生效,重新規範VASPs對於虛擬資產轉帳再定義後義務。以下針對法規變革脈絡簡要說明: AML/ CFT規則(AML/ CFT (Definitions) Regulations 2011)將虛擬資產定義為具有價值的數位貨幣,可用於交易、達成支付或投資目的;雖其不等同於債券、股票與衍生性金融產品或數位法定貨幣,VASPs仍為AML/ CFT法定義之報告實體,負有對客戶進行盡職調查、報告特定業務活動與交易的義務。 自2024年6月起,AML/ CFT規則全面納管虛擬資產轉帳,範圍由法定貨幣與虛擬資產間的流動,擴及虛擬資產間的交易,包含以VASPs作為中介機構之交易情形。此外,基於虛擬資產跨境的特性,所有轉帳皆被推定為國際轉帳,除非VASPs確定該筆交易發生紐西蘭境內。AML/ CFT規則對虛擬資產平臺交易之監管密度係以1,000紐幣為閾值,VASPs須對超過此金額的國際轉帳,向金融情報中心(Financial Intelligence Unit, FIU)提送交易報告;而對於臨時性交易則應盡職調查客戶。 為降低虛擬資產被用於非法活動之風險,防制洗錢金融行動工作組織(FATF)倡議於國際施行一致之監管標準,避免因各國法規監管差異造成防堵漏洞。紐西蘭政府藉改造現行金融法規將相關產業逐步納入監管,並提供指引說明及闡釋法規內容,調適金融科技發展與現有制度規範落差。此次AML/ CFT規則與VASPs指引之修正,將有助於紐西蘭更符合國際組織建議之洗錢防制與反資助恐怖活動監管標準。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

談日本基因改造實驗管理規範及其執行現況

TOP