用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)於2020年9月9日發布「國家資料戰略」(National Data Strategy),作為英國規劃其政府資料流通運用的整體性框架。數位、文化、媒體暨體育部長Oliver Dowden表示,資料為驅動現代社會經濟發展的關鍵。於今年COVID-19的全球疫情流行期間,政府、企業、組織等彼此及時共享重要資訊,除達成了防疫目標,更維繫了各層面的經濟生活。因此,本戰略則規劃活用此段期間獲得的知識與經驗,試圖透過資料的釋出流通與運用,讓英國經濟自COVID-19疫情中復甦,提高生產力與創造新型業態,改善公共服務,並使之成為推動創新的樞紐。 為優化英國資料的運用,本戰略提出了四個核心面向:(1)資料基礎(data foundation):資料應以標準化格式,且符合可發現(findable)、可取用(accessible)、相容性(interoperable)與可再利用(reusable)的條件下記載;(2)資料技能(data skills):應藉由教育體系等培養一般人運用資料的技能;(3)提升資料可取得性(data availability):鼓勵於公共、私人與第三部門加強協調、取用與共享具備適切品質的資料,並為國際間的資料流通提供適當的保護;(4)負責任的資料(responsible):確保各方以合法、安全、公平、道德、可持續、和可課責(accountable)的方式使用資料,並支援創新與研究。 基此,本戰略進一步提示了五個優先任務:(1)釋出資料的整體經濟價值:建立適切的條件,使資料在經濟體系內可取得且具備可取用性,同時保護私人的資料權(data rights)、以及企業的相關智慧財產權;(2)建構具發展性且可信賴的資料機制:協助企業家與新創人士以負責任及安全的方式使用資料,避免產生監管上的不確定性或風險,並藉以推動經濟發展。同時,也期待藉由機制的建立,鼓勵公眾參與資料的數位經濟應用;(3)改變政府運用資料的方式,提升效率及改善公共服務:以COVID-19疫情期間政府對資料積極運用為契機,推動政府間的整體資料有效管理、使用與共享措施,為相關作法建構一致性的標準與最佳實踐方式;(4)建立資料基礎設施的安全性與彈性:資料基礎設施為國家關鍵資產,應避免其遭遇安全或服務中斷的風險,進而導致資料驅動的相關業務或組織服務中斷;(5)推動國際資料流(international flow of data):與國際夥伴合作,確保資料的流通運用不會因各地域的制度不同,而受到不當限制。
美國國家標準與技術研究院「隱私框架1.0版」美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。 NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。 本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。
日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。 本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下: 1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。 2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。 3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。 本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。
美國FDA擬參考PDUFA,向學名藥產業收費美國FDA官員新近對外表示,該局正考慮參考處方藥使用者付費法(Prescription Drug User Fee Act, PDUFA),研擬一套向學名藥產業收費的機制。PDUFA是美國國會在1992年所通過的法案,依據該法,生技及製藥產業向FDA支付「使用費」(user fees),FDA承諾每年達到一定的審查“業績”(performance standards),以加速新藥上市申請。 目前PDUFA的適用對象並不包括學名藥廠,鑑於歷年來學名藥上市申請案件大幅攀升,以FDA既有之人力與資源,早已無法負擔如此大量的上市審查工作。另若考量諸多知名原廠藥之專利將在未來幾年陸續到期,如不增加新的資源,FDA的學名藥審查負擔將會持續惡化。使用者付費機制若能擴及學名藥,則FDA將可獲得額外資源,用來聘用更多的專業審查人員、取得更為豐富之資料,以保障病患之權益,使其可儘速近用便宜且有效之學名藥。 雖然PDUFA在改善新藥上市審查效率方面,確實達到了政府與產業界雙贏、民眾受惠的目的,不過這套制度要擴及學名藥產業,卻遭受到學名藥業界的反對。其中最主要的疑慮來自於,在現今的審查制度設計下,提高學名藥上市審查效率的目標是否能透過使用者付費達成,殊值懷疑。蓋根據美國法律規定,學名藥廠若以原開發藥廠之專利無效為理由申請上市,應將申請上市之事實通知原開發藥廠,一旦原開發藥廠認為學名藥廠侵害其專利並提起訴訟,FDA即必須停止學名藥之上市審查。據此,學名藥業界認為,在上述問題解決前,即使PDUFA擴及適用到學名藥產業,也並未能有助於改善學名藥上市審查之效率。 總而言之,PDUFA若欲擴及學名藥產業,仍需釐清前揭疑慮並有待國會立法通過,不過,一旦使用者付費機制擴及適用於學名藥產業,則學名藥廠之藥物開發成本將會提高,我國學名藥廠如欲經營美國市場,值得注意其發展。