用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=57&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
歐盟將投入五千萬歐元投入5G研究

  行動寬頻使用人數已達1.2億,且估計每年將成長數億人口,許多研究估計2020年行動流量將比現在增加33倍。為了奪回全球手機領導者地位,歐盟不僅從2007年開始,投入超過三千五百萬歐元發展4G與4G以上的無線技術,歐盟執行委員會副主席Neelie Kroes於今年更宣佈將投入五千萬歐元研究5G通信(2013年~2020年)。   在現有的第七框架研究與發展計畫(Seventh Framework Programmefor research and development )中,歐盟已有8項關於5G的研究計畫。其中,以易利信(Ericsson)所主導的METIS(Mobile and wireless communications Enablers for Twenty-twenty Information Society),備受各界矚目。METIS的研究團隊來自共10個國家,涵蓋領域包括電信營運商、製造商、學術機構與商用軟體業者。METIS將進行網路拓樸(Network Topologies)、無線連結(Radio Links)與頻譜使用研究、以為歐洲建立一個5G的行動與無線通信系統。   目前,METIS對於未來整體目標是希望達到:   1.行動寬頻流量每單位面積能比現在高出1000倍,使網路營運商能同時服務更多消費者。   2.聯網設備比現在多出10倍至100倍。   3.行動寬頻使用速度將比現在高出10倍至100倍,觀看視頻將更為容易。   4.機器對機器通訊(Machine-to-Machine-Communications)的電池使用時間將多出10倍。   5.網路延遲的時間將會降低5倍。   雖然,5G發展僅為初期,而各歐盟會員也僅英國投入三千五百萬英鎊,但是,部分輿論從英國4G不斷延遲的例子,認為現在發展至少降低5G重蹈覆轍的可能性。

科睿唯安 (Clarivate)公布2021年商標生態系統研究報告: 全球視野下的商標價值、保護及技術優化

  著名英國科學研究分析公司科睿唯安 (Clarivate)於2021年2月18日公布《2021年商標生態系統報告》,此報告由科睿唯安委託Vitreous World 於2020年底時分別對英國、美國、德國、義大利、法國、中國大陸以及日本等七個國家共300位專業顧問進行線上訪問,了解商標專業人士對於各國商標價值、商標保護以及技術優化之相關見解為何。此份報告之主要發現如下: 全球商標侵權狀況持續上升中:相較於2017年共有74%受訪者提及曾遇到商標侵權案件、2018年為81%、2019年則有85%。本次調查時竟有高達89%受訪者表示常經手商標侵權案件,且逾半數者表示,其企業在遭遇商標侵權後更改了品牌名稱,此類狀況於日本特別嚴重。 高階主管態度影響企業獲利機會:89%受訪者表示,企業高階主管人員對於智財問題無意識或不予關注時,組織往往無法利用商標或其他智財權利以適時抓緊商機、進入新市場或建立新合作關係。其中亦有五分之一受訪者提到,其企業董事會相關成員完全不參與企業智財議題討論。 社群媒體名稱成為許多商標侵權管道的起源:此次共有50%受訪者表示,社群媒體名稱成為首要的商標侵權源頭;但中國大陸受訪者有73%表示,網域名稱仍為商標侵權常見管道。   今全球產業趨勢已進入知識創新時代,企業欲保持競爭力需善用智財權以維持內部能量,且為防免智財侵權威脅並把握新市場藍海,須由企業全體成員齊心關注努力,而不僅是商標部門人員的責任,管理階層更應了解企業智財狀況,適時更新智財管理與布局策略,增強市場地位。

音樂著作授權費 演出拉鋸戰

  根據著作權法第 82 條規定,著作權仲介團體與利用人間,對使用報酬爭議之調解,由著作權專責機關設置著作權審議及調解委員會辦理。新近社團法人中華音樂著作權仲介協會( MUST )提出網路電視、電影、網路廣播、網路上提供音樂欣賞、入口網站、網路音樂下載等行業業者公開傳輸費率,業者如有串流、下載、同步傳輸行為,應繳納高額之授權費用,遭到 業者抗議,此舉將遏殺數位業者萌芽的機會。   事實上在 94 年時,智慧局的費率審議委員會即曾駁回 MUST 提出的網路電視、電影等公開傳輸費率,但因網路電視、網路影片,所運用的素材不只是音樂,還包括小說、攝影、圖片,如果每一著作人都主張要收費,利用人的負擔將太重,所以智慧局當時並未通過其新費率。   不過,新近 MUST 又重新提出一個新的費率,網路電視、電影( MOD )如以串流方式公開傳輸,授權費用是業者前一年營業收入的 6% ;如果下載到硬碟、光碟片等,不是重製權,只是收下載「過路費」,授權使用費提高到前一年度營收的 10% ;如果是網路電視、電影同步傳輸,則以前一年度營收 2% 收取費用。即使是公益、非營利性的網路電視、電影,也要以全年度節目製播預算的 0.3% 計算音樂著作使用報酬。   由於此一費率與新興網路業者生存關係重大,經濟部智財局於 4 月中旬舉行「 MUST 新增、調高公開傳輸、公開演出使用報酬率意見交流會」,會中最後同意,由同行業的利用人團體一起組成談判小組,再與 MUST 進一步協商,具體討論出雙方能接受的方案。

日本智慧交通挑戰計畫

  日本經濟產業省於2018年召開「IoT和AI可能衍生之新型態交通服務研究會」(IoTやAIが可能とする新しいモビリティサービス関する研究会),並於2019年4月公布「朝向新型態交通服務之活性化」(新しいモビリティーサービスの活性化に向けて)報告;國土交通省亦自2018年底起召開「都市與地方新型態交通服務懇談會」(都市と地方の新たなモビリティサービス懇談会),於2019年3月公布中間結果。經產省和國土省根據上述會議結論,自2019年4月起,發起支援地方政府挑戰推動新型態交通服務之新計畫「智慧交通挑戰」(スマートモビリティチャレンジ)。   「智慧交通挑戰」計畫之目的,在於促使地方政府與企業合作,以實現自動駕駛社會,並透過新型態交通服務解決既有交通問題和加速地方活性化,其具體措施包括︰(1)透過設置「智慧交通挑戰推進協議會」及舉辦論壇,促進地方政府和企業間共享資訊,形成工作網路;(2)經濟產業省補助新型態交通服務實用化、計畫制定和效果分析等計畫;(3)國土交通省補助MaaS等新型態交通服務實驗,以及建構以解決地區交通服務為目的之模型等計畫。經產省與國土省分別自4月起對外公開募集提案,最終於75個提案中選出28個計畫,將於今年起陸續施行。

TOP