用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=57&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
車聯網「V2V」簡介

  V2V(Vehicle-to-vehicle)通訊使用短程無線通訊技術(dedicated short-range radio communication, DSRC)交換周邊車輛速度與位置等相關訊息,並協助採取相對應措施,如警告駕駛前方車輛正在剎車,或於駕駛視線死角處有其他車輛正高速接近。因此,使用V2V通訊技術可有效避免車輛間相互碰撞、紓解交通壅塞之問題,對環保方面亦有所助益,然而,此技術於多數車輛間得以相互通訊時,方能最大化其效益。   V2V通訊技術可以每秒約10次之頻率,使車輛間相互廣播並接收全面之訊息,從而在一定距離範圍內360度「感知」其他車輛並與其他車輛進行「對話」。若將搭載V2V通訊技術之車輛配備適當的軟體或安全設備,車輛間即可利用接收到的有效訊息來避免潛在的事故威脅。V2V通訊技術可偵測出超過300公尺範圍之交通情況,包括因交通、地形或天氣影響而受人類駕駛忽略之危險,較傳統使用雷達系統或攝影鏡頭進行偵測之方式更為精準。   無論是機車、汽車、卡車及公車皆可使用V2V通訊技術以提升車輛安全系統的性能,車輛間之連接技術將成為協助駕駛發現潛在交通危機的輔助工具,有助於顯著減少每年因交通事故喪生之人數。

日本財務省研擬要求企業以電子方式申報法人稅和消費稅

  日本納稅作業效率和全世界其他先進國家相比仍然偏低,根據世界銀行之調查,日本企業每年花費納稅作業的時間約330小時,是OECD會員國平均時間的1.9倍。為有效提高企業處理稅捐事務作業之效率,日本財務省研擬要求企業申報法人稅和消費稅時必須以電子方式進行,目標是在今年6月前提出具體草案,納入2018年度的稅制改正大綱。   日本自2004年起開辦法人及自然人透過網路申報納稅,各地稅務署可透過國稅綜合管理(SKS)系統讀取申報書類並取得其內容,且由於相關申報書類依法應保存9年,利用電子申報方式可有效節省空間成本程序負擔。   以2015年為例,法人稅全年總申報件數約196萬件,其中已有75%是經由網路申報。但另一方面,資本額1億元以上的日本企業經由網路申報者則僅有52%,理由除了大企業多有自成一格的總務會計系統,以及普遍仍存在以收據等文件進行報帳的習慣外,佔稅收全體約4成的地方稅目前仍有許多地方政府尚未提供電子申報之服務也是重要原因,就此總務省亦將持續進行基礎設施之整建以克服此問題。   我國自1998年擘劃電子化政府起至今已邁入第五階段,為能達成「便捷生活」、「數位經濟」及「透明治理」三大目標以及「打造領先全球的數位政府」之願景,應可參考前述日本政府之各項作法。

荷蘭與德國率先成立GO FAIR國際支援與合作辦公室,推動歐洲開放科學雲

  歐洲開放科學雲(European Open Science Cloud, EOSC)旨在整合現有的數據基礎設施以及科研基礎設施,為歐洲研究人員與全球科研合作者提供共享的開放資料服務。為此,荷蘭與德國於12月率先成立GO FAIR國際支援與合作辦公室(The GO FAIR international support and coordination office, GFISCO)。荷蘭辦公室坐落於萊頓,並由荷蘭政府與萊頓大學醫學中心(Leiden University Medical Center)所共同出資設立。   該辦公室之成立源自於GO FAIR計畫,GO意即全球開放(The Global Open)、FAIR則分別係指可發現(Findable)、可連接(Accessible)、共同使用(Interoperable)和可重複使用(Re-usable),其目標在於跨越國界,開放目前科研領域現有的研究數據,係為邁向歐洲科學雲之里程碑。 荷蘭與德國曾於2017年5月時,發表聯合立場聲明書以展現推動歐洲開放科學雲以及全力支援GO FAIR計畫之企圖心,此次辦公室之設立為,包含以下主要任務: 支援由個人、機構、計畫組織等各方所組成的GO FAIR實踐網絡(GO FAIR Implementation Networks, INs)之營運工作。 進行GO FAIR實踐網絡之協調工作,以避免重複或壟斷之情形發生。 透過教育支援等方式倡議推行GO FAIR計畫。   GO FAIR國際支援與合作辦公室主要之角色為提供建言,而非幫助GO FAIR計畫做決策,若無達成預期效果或是缺乏明確的工作計畫時,該辦公室則可提供相關服務,以協助達成預期目標,並協助處理行政上之相關議題。

雲端時代資料保險機制之解析

雲端時代資料保險機制之解析 科技法律研究所 2013年12月05日 壹、前言   資訊時代,資訊應用所帶來的風險幾乎無可迴避,且往往帶來莫大衝擊;尤其在網路應用普及之後,大量資料透過網路傳輸、流通而暴露於資訊安全的風險當中,縱有再有高層級的防護,也無法使資料受損或漏失的風險機率降至零,因此有論者以為,對於無法藉由資訊安全措施加以避免的「殘餘風險」(Residual Risk),應由「保險機制」予以移轉。本研究特探討本議題,以呼應目前日益進展的保險產品發展趨勢。   此類的保險機制,一般稱為資料保險,專門填補網路應用所造成的風險,諸如網路安全(Network security)之欠缺所造成的損失,或者隱私(Privacy)被害所造成的損失。依據產業觀察者意見,此類保險產品的市場正有逐漸擴張的趨勢,尤其是對於健康照護服務(Health care)以及中小型的業者而言,此類保險對於風險管理服務可以發揮長足的作用,其能夠填補資料被害的通知成本、信用監控以及加強資料防護的成本[1]。   本文以雲端運算應用的興起為背景,觀察相應保險機制的演進及發展;以及其對於產業發展而言,為何被視為不可或缺的配套機制,進一步檢視我國推動資料保險的可行性與條件。 貳、資料保險機制的發展 一、資料保險的種類   用來填補資料受害之損害的保險,一般被稱為「資料保險」,尚可見以「網路保險」或「隱私保險」稱之。與其直接定義何謂「資料保險」,不如分析此保險的涵蓋範圍。此類保險早在十幾年前出現,當時其保險範圍,是填補資料被害所引發的損害賠償責任[2]。   財產保險可分成兩大類型,一類是一般的財產損害,即保險事故發生導致被保險人的財產減損或喪失,承保此類財產損失之保險,即英美法系所稱之「第一方保險」(First-party coverage)。另一類則是責任保險,即保險事故發生導致被保險人應負擔法律上責任或契約上損害賠償責任,承保因被保險人應負擔責任之財產損失,即所稱之「第三方保險」(Third-party coverage)。   在資料應用環境中,因資料受害導致損害大抵可依上述區分。當遭遇網路犯罪的損害、毀壞(Destroys)或是剝奪被保險人對於資料的使用權限,則屬於第一方財產損失。另一方面,當被保險人所保護、監管(Custody)或控制的第三人資料或資訊,遭遇網路犯罪損害、毀壞或竊取時,將使被保險人必須承受對第三方負擔損害賠償責任、並支付相關費用,此屬於第三方財產損失,例如入侵資訊系統而竊取信用卡資訊、受保護的個人資料、及銀行的帳戶號碼,又如妨礙有合法權限的第三人近用系統,以及違反法規所要求而未向第三人通知資料侵害等…[3]。 二、資料受害所致損害是否得請求保險賠償過往有很大爭議   傳統的財產保險,由於未指明承保因資料被害所致損失,往往會在被保險人因資料被害導致財產損失而請求保險賠償時,發生很大的爭議。主要的原因是,傳統的財產保險其設計原則,是以被保險人對於有形財產的「保險利益」作為「保險標的」,並以有形財產受損來估算保險損害,並未考量到資料等無形財產。因此,起因於資料或類似形態的程式、軟體之缺損所致的損害,是否可能在傳統財產的保險範圍內,頗有疑義,且司法實務上的意見相當分歧,茲整理如下。 (一)有利於被保險人的實務見解   在America Guarantee & Liability Insurance Co. v. Ingram-Micro[4].中,Ingram-Micro因幾分鐘的電力中斷,導致電腦資產與資料的喪失而嚴重影響正常的業務運作,遂依業務中斷保險(Business-interruption insurance)請求保險賠償,但遭受保險公司拒絕,保險公司提起訴訟並宣稱承保範圍未包含電腦與其他資產。地方法院認為,被保險人客製軟體程式的喪失,構成「具體損害」,具體損害不限於電腦迴路的被有形損毀或傷害,也會包含無法近用(Loss of access)、無法使用(Loss of use)以及功能喪失。   另一案Lambrecht & Associates, Inc. v. State Farm Lloyds[5],保險公司認為電腦病毒感染所造成的損失,非有形損失,因而拒絕保險給付。法院認為,本案之電腦系統以及儲存的資料皆因病毒感染而毀壞、被置換(Replaced),此種結果,等於電腦系統完全無法接收、發送或回復任何形態的資訊,而完全失去作為電腦系統的效用;因此未接受保險公司的主張。   近期一例為責任保險爭議。Retail Ventures, Inc. v. Nat'l Union Fire Ins. Co.[6]中,Retail Venture是DSW鞋子盤商,2005年時它的電腦系統遭駭客入侵,共有百萬筆的客戶資料遭不當下載且許多資料夾也被翻閱過。由於DSW向Nat'l Union購買商業竊盜險,在其承保項目中包括電腦與資金移轉詐欺(Computer & Fund transfer fraud coverage),DSW遂向保險公司請求保險賠償,主張此次駭客入侵所造成的損失有530萬元之多,但保險公司拒絕給付賠償金。於是DSW對保險公司提起訴訟,地方法院認定保險公司應支付保險賠償,保險公司不服,提起上訴至巡迴法院,巡迴法院認為,條款規定雖是限於該損失是由保險事故「直接造成」(Resulting directly from),但這不代表該保險事故必須是造成損失的「唯一」(Solely)與「立即」(Immediately)的原因[7],因此維持地方法院的判決。 (二)有利於保險人的實務見解   在America Online, Inc. v. St. Paul Mercury Insurance Co.中,由於America Online(AOL)所生產的網路接取軟體AOL 5.0據稱會毀壞用戶的電腦系統,因而被客戶訴訟求償,AOL依責任保險內容,轉而請求保險公司應替其進行訴訟防禦,遭保險公司拒絕。為此,AOL對保險公司提起訴訟,法院遂檢視保險契約中是否載明保險公司有進行訴訟防禦的義務。契約中將情境限於「有形」財產損失,法院解釋,從字義上一般不會認為電腦資料、軟體及系統是「有形」財產,因為有形財產應是指可以觸摸(Be touched),但電腦資料、軟體及系統無法被感官感知,因此是無形財產。此外契約中亦有「功能降低除外條款」,意即,不良品或者危險產品所造成的損害非有形,故被排除在承保範圍內。法院據此否認AOL的主張[8]。 三、「新」資料保險產品應運而生   從上述實務案例的觀察,作成不利於被保險人判決結果的法院,是直接認定電腦資料、軟體與系統為無形財產。反之,作成有利於被保險人判決結果的法院,是將「資料」(程式或軟體)與「電腦系統」合為觀之,而認定電腦系統為有形財產,把電腦系統無法發揮正常作用視為具體損害。即使判決結果可能有利於被保險人,但是解釋方式卻較為迂迴,也顯得被保險人相當艱辛。 參、外國資料保險機制之發展實例與推動   雲端運算發展日益普遍日後,可以透過網際網路提供資訊服務(例如儲存空間、應用程式等),「資料」已然不附載在特定或固定的載體(電腦系統)上。因應整體資訊應用形態的轉變,國內外市場上逐漸有相關資料保險產品推出的案例。 一、實例   第一個例子,MSPAlliance是一個資源管理服務業者暨認證聯盟,於2013年4月與保險經紀公司Lockton 合作,設計「雲端暨管理服務」保險(Cloud and Managed Services Insurance),讓其聯盟會員提供資訊服務時得以購買此保險;承保項目包括因網路攻擊、資料滅失或系統故障而導致應負擔損害賠償責任,以及因技術錯誤或無法作用(Tech Errors & Omissions)所導致的損害賠償責任,亦包含在內。至於被保險人的資格要求,則限定是聯盟會員,且必須通過Unified Certification Standard (UCS)驗證。事實上,要求被保險人取得一定的驗證,是保險風險管理很重要的ㄧ環。   第二個例子,雲端保險服務平台Cloudinsure於2013年2月宣布與保險經紀公司Lockton合作,擬設計適於雲端環境的隱私與安全責任保險方案。其保險產品內容主要在確保雲端服務提供者可履行在契約、或服務水準協議(Service Level Agreements)中的承諾,再者也能依據其客戶存放於雲端環境之資料的風險層級,給予金錢防護。 第三個例子,與前兩例不同,是針對一般的資訊服務使用者來設計。保險經紀公司達信(Marsh)於2012年6月針對雲端環境的企業使用者,開發新的保險方案CloudProtect。被保險人是採用雲端服務的中小型企業,承保項目包括:因雲端服務中斷所致的營運收入損失(Loss of income)、因採購新的雲端服務提供者所產生的相關費用支出、因資料轉換至新的雲端服務所產生的相關費用支出。 二、政府的參與及投入推動   美國的國家技術標準局(Institute of Standards and Technology, NIST)在規劃新網路時代藍圖時,把持續促進資料「保險」(Cyber Insurance),列為關鍵的一角。從這個角度而言,保險不僅具有轉移風險與填補損害的功能,更具有正面積極的意義,可作為新興技術發展的後盾。對於NIST這樣的主張,美國保險人協會(American Insurance Association)也予以呼應,認為針對網路應用環境而持續開發各種保險產品,是勢在必行的方向。 (一)政策推導   美國證券交易委員會指引(2011年),建議公司若為因應資安風險而購買保險產品,應列入資訊揭露範圍。此被認為是間接鼓勵企業購買相關保險產品的具體措施之一。 (二)政府機關作為被保險人購買資料保險之例   美國有以政府機關名義購買資料相關保險之例,蒙大拿(Montana State Government)購買「網路資料安全保險」(Cyber/Data Information Security Insurance),為期一年(2012年7月1日至2013年7月1日),保險項目包括:資訊安全責任(每次事故保險賠償上限200萬美元)、行政罰款(每次事故保險賠償上限200萬美元)、損害通知支出(每次事故保險賠償上限100萬美元)、網站媒體披露支出(每次事故保險賠償上限200萬美元)、每次保險事故發生以200萬美元為總保險賠償限額。此案之保險業者為Beazley,保險經紀人為Alliant Insurance Services。值得特別注意的是,保險項目當中包含損害通知支出,此是呼應了美國相關法令要求業者必須於獲悉資安事故時踐行通知相關的資料主體。   資安事故的確實可能使政府機關蒙受莫大損失,美國南卡羅萊納州稅務局(South Carolina Department of Revenue)2012年發生駭客攻擊事件,州政府花費約2000萬美元收拾殘局,其中1200萬美元用來作為市民身份被竊後的信用活動監控,其他則用來發送被害通知、資安強化措施、及建立數位鑑識團隊、資安顧問。 肆、結論-我國推動相關資料保險機制可行性之總合評析   現階段我國相關保險市場的現況,為因應我國個人資料保護法的通過與正式實施,也有推出資料相關保險產品,目標客群為企業,以協助企業因應觸及個人資料可能產生對他人的損害賠償責任、及填補其他附帶損害為主要訴求。至於,針對業者(被保險人)因提供資訊服務過程中的資料被害、毀損滅失所導致營業損失(營運中斷、負擔契約上損害賠償責任)之損害填補,似尚未有相關保險產品推出。考其原因,是保險業者對於此種因無形財產(資料)所導致損害的保險賠償模式,尚未累積足夠的經驗,也缺乏相關精算數據的掌握,因而不敢貿然承作,另一方面,保險業者本身也擔憂無足夠資力因應大規模的保險事故。 對此現象,我國主責資訊服務產業推動的有關政府部門,也思及政府投入參與資料保險機制,例如推動以機關為被保險人而購買相關的資料保險,藉以活絡資料保險市場;此種構想,在法律層面並無疑義,此乃保險賠償與國家賠償機制雖有各自目的,但未有所衝突[9]。然而,實際操作上,必須考量政府機關資訊系統是否能通過保險業者的保險風險查核、是否有足夠的預算足以支付保險費用、以及決策單位是否能有效與資訊業務單位溝通以評估購買此類保險的需求...等諸多問題。   事實上,我國相關資料保險市場要邁向成熟發展,尚待多方努力,除保險業者本身規劃並提出合適的保險產品之外,參酌國外經驗,保險經紀公司也能扮演一定角色,可針對客戶需求量身訂作風險評鑑、研提最符合的保險方案,並藉客戶共同需求而匯聚保險風險共同團體。政府所扮演之角色,除直接以政策推導之外,尚能在若干條件齊備之後實際參與保險機制,其後續方向值得關注。 [1]Collin J. Hite, Top lawyers on trends and key strategies for the upcoming year the ever-changing scope of insurance law, Aspatore Feb. 2013. [2]http://www.computerweekly.com/news/2240202703/An-introduction-to-cyber-liability-insurance-cover (last visited at Oct. 24, 2013) [3]Jack Montgomery, Cybercrime losses and insurance for property damage and third-party claims, Maine Bar Journal, Summer 2012, p. 159. [4]Civ. 99-185 TUC ACM, 2000 U.S. Dist. Lexis 7299 (D. Ariz., April 19, 2000). [5]Lambrecht & Associates, Inc. v. State Farm Lloyds, 119 S.W.3d 16, 25 (Tex. App. 2003). [6]Retail Ventures, Inc. v. Nat'l Union Fire Ins. Co. of Pittsburgh, Pa., 691 F.3d 821 (6th Cir. 2012). [7]Retail Ventures, Inc. v. Nat'l Union Fire Ins. Co. of Pittsburgh, Pa., 691 F.3d 821 (6th Cir. 2012), p.13. [8]America Online, Inc. v. St. Paul Mercury Ins. Co., 207 F. Supp. 2d 459 - Dist. Court, ED Virginia 2002, P.461-462. [9]請參考96年法務部法律字第0960003420號函。

TOP