用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=57&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
日本ZEON股份有限公司宣布加入「對抗COVID-19智財宣言」

  日本ZEON公司於2020年10月19日發表加入「以智慧財產協助控制新冠病毒傳染對策宣言(對抗COVID-19智財宣言,OPEN COVID-19 DECLARATION)」,以達到共同抗疫之目的。   該宣言是由ジェノコンシェルジュ京都株式会社(GENO CONCIERGE KYOTO)所發起,期望透過加入該宣言的企業,於以終結新冠肺炎蔓延為目的所為之產品開發、製造及販賣,宣示不行使企業所擁有相關發明、新型及設計專利權和著作權等權利。如此一來,將可建構友善的防疫產品開發及製造環境,讓開發者或製造商免去來自權利人的侵權調查或繁複的授權流程。 目前已有包括Canon、Nikon、SONY、CASIO、Panasonic、大金空調、豐田、三菱、速霸路、馬自達等101間知名企業加入,並擁有高達927,897件的專利數量。   經產省近畿經濟產業局也與該宣言辦公室合作,提出對抗新冠肺炎計畫,計畫主軸在於以下三點: 從加入宣言的所有專利中,挑選易於活用的技術並提出施行的可行方案。 協助中小及新創企業與加入宣言的企業對談,支援權利交涉。 協助擬定授權契約及業務展開等必要策略。   我國在經濟部智慧財產局全球專利檢索系統(GPSS)全新提供「防疫專區」服務,以目前防疫需求較大的產業如「口罩」、「防護衣」、「檢測」、「疫苗」、「藥品」等14項作為分類主軸,提供「一鍵查詢全球防疫技術相關專利」及「防疫技術相關專利新訊訂閱」功能,協助產業界快速掌握全球防疫技術相關專利。

歐洲化學品管理署(ECHA)下的社會經濟分析委員會已開始針對限制性措施展開風險管理及成本利益分析等相關工作

  今年(2008)4月2-3號,歐洲化學品管理署(ECHA)下,為社會經濟分析(Socio-economic)目的所設置之委員會,於赫爾辛基(Helsinki)舉行了首次的會議。歐洲化學品管理署執行長Geert Dancet在其公開聲明中提到:「對社會經濟分析委員會(SEAC)之挑戰,是因其被REACH法規範所引用而產生;而此種模式,亦將成為歐盟化學物質立法制度下的一項新工具。其還強調,應同時平等地考量並兼顧到產業、環境及健康等三方面因素,並以前三項因素皆已臻衡平之方式來進行交易」。   此外,於REACH法規範下,該委員會於限制與管理流程上,亦扮演著重要角色。其將掮負起為該署準備關於:申請管理、限制措施建議案提出、以及其他在REACH法規範下與化學物質管理有關之立法措施所將可能導致歐洲社會經濟方面之影響與衝擊等問題,提出相關意見。而目前,就於化學品範圍內,對可能之立法措施未來所將產生的衝擊進行社會經濟面之評估而言,此舉,實為一新且未知的一塊領域。   此外,透過此次會議,除決定了該委員會日後運作之模式外,也達成共識ㄧ致認為:透過此種模式,將能夠保障委員會運作之透明性;同時,還一併能兼顧到它的獨立性,及相關資料的隱密性。目前,該運作模式將待歐洲化學品管理署董事會議正式審核通過後,即開始生效。最後,社會經濟分析委員會於2008年間規畫,擬將舉行兩次會議,而下一次的會議則已預定將於10月份召開。

歐盟對中小型生技公司提供藥政管理之費用優惠及專業協助

  中小型公司是生技產業發展的主力,然藥物研究發展模式風險及資金需求甚高,對資金不豐沛的中小型公司來說,無疑是一大負擔,因此,各國政府於促進生技醫藥產業發展之同時,相當重視如何減輕這些生技製藥公司的營運壓力,進而協助其順利茁壯。   現今歐盟境內至少有1500家中小型生技公司,為減輕這類研發導向的中小型製藥公司之財務負擔,並提供一些藥政管理上的專門協助,歐盟於去2005年12月15日通過了〝歐盟醫藥品管理局協助中小型公司發展規則(COMMISSION REGULATION (EC) No 2049/2005 laying down, pursuant to Regulation (EC) No 726/2004 of the European Parliament and of the Council, rules regarding the payment of fees to, and the receipt of administrative assistance from, the European Medicines Agency by micro, small and medium-sized enterprises,以下簡稱本規則)〞。   本規則主要是希望EMA(European Medicines Agency, 即歐盟醫藥品管理局)能透過相關規費之減免及提供科學諮詢的方式,降低中小型公司新藥上市申請費用(一般而言,人類用新藥於歐盟上市需支付14 萬歐元的申請費用),進而促進技術創新及新藥研發。另為協助中小型公司能更快速及方便地利用到這些優惠,本規則特要求EMA應於其內部建立〝中小企業辦公室(SME Office)〞,並製作詳細之使用者手冊(User Guide)供中小型公司參考。   台灣大部分的生技製藥公司亦屬中小型,故政府應思考如何幫助這些公司成長茁壯。雖然我國對生技製藥產業相關已提供投資抵減優惠,但卻無特別針對中小型生技製藥公司的藥政管理法規,歐盟前述立法及其精神值得我國借鏡。

美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引

美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容: (1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。 (2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。 (3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。 具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。 從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。

TOP