用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
為了持續維持日本國內以及與東京奧運舉辦相關的關鍵基礎設施服務的安全性,日本內閣網路中心於2017年4月19日公布關鍵基礎設施資訊安全對策第4次行動計畫。 在第4次行動計畫,關鍵基礎設施防護目的主要是以關鍵基礎設施的功能保證為考量,盡量減少關鍵基礎設施IT故障的發生,並提升從事故中恢復的速度。因此,第4次行動計畫除持續檢討並改善第3次行動計畫原有政策外,較重要的變革為OT(Operation Technology)的重視與風險對應機制整備。在安全基準整備與落實情況方面,要求關鍵基礎設施產業須將OT的觀點融入人才培育。在資訊分享制度方面,分享的資訊範圍應包含IT、OT與IoT的資訊,並排除資訊分享的障礙。而在風險管理部分,日本從功能保證的觀點出發,新增風險情況對應準備的要求,包含事業持續計畫的提出與緊急應變措施的制定等。而在防護基礎強化上,該行動計畫認為關鍵基礎設施產業的IT、OT人員及法務部門必須依其內部資訊安全策略共同為關鍵基礎設施安全而跨組織合作。 另外,第4次行動計畫變更電力領域關鍵基礎設施的重要系統,從原有的運轉監視系統變更為智慧電表,以及新增化學、信用卡與石油三大關鍵基礎設施領域的業者、關鍵系統與因IT故障對關鍵基礎設施可能造成的危害影響。
「自動駕駛車(self-driving car)」可否合法上路?「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。 目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。 而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
德國與愛爾蘭對於個人資料處理是否須明示同意之見解不同德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。 德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。 有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。 對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。
Rambus再興訟 南亞科、華亞挨告美國記憶體設計司Rambus1月25日向美國北加州地方法院提出侵權告訴,指控Hynix、南亞科技、華亞科技、英飛凌等四家DRAM廠,涉嫌侵犯Rambus的DDR2記憶體、GDDR2及GDDR3繪圖卡用記憶體等共18項專利。南亞科副總經理白培霖表示,還不了解Rambus實際的指控內容,一切仍在了解中。 Rambus三年前推出RDRAM並獲得英特爾支持成為次世代主流產品,但因當時DRAM廠基於成本考量,決定支持DDR規格,所以Rambus後來不得不被迫退出標準型DRAM市場。然因Rambus擁有多項記憶體專利,目前主要產品獲得新力PS遊戲機採用,所以大部份營收來源均來自於權利金收入,去年Rambus營收約1億4500萬美元,其中的1億2000萬美元就是權利金收入。 由於Rambus前年就宣佈研發出DDR2產品,隨著今年英特爾力推新款支援DDR2晶片組,全球DRAM廠均投入DDR2生產,因此Rambus再度興訟,控告Hynix、南亞科技、華亞科技、英飛凌等四家DRAM廠,侵犯其 DDR2及GDDR2、GDDR3等記憶體共18項專利。 對於被Rambus控告一事,南亞科技及華亞科技提出說明。白培霖說,南亞科及Rambus一直就二家製程技術洽談相互授權事宜,內容包括DDR2及繪圖卡用記憶體GDDR3等,但目前為止雙方還沒有達成相互授權協議,自然也沒有權利金支付問題,由於南亞科目前還沒收到起訴書,不知道Rambus提出的控訴內容為何,因此一切有待再進一步了解後再行說明。除了此次的Rambus控告南亞科侵權,去年日本半導體大廠瑞薩科技(Renesas)也三度對南亞科技提出侵權控告,瑞薩除了指出南亞科技侵犯其記憶體製程、設計、封裝等專利權外,去年十月底還向東京地方法院提出申請,將對南亞科技日本子公司進口、銷售DRAM行為進行假處份(Preliminary Injunction)。 對於國際大廠不斷針對南亞科提出侵權告訴,南亞科技表示,與瑞薩在日本、美國的專利權官司,至今還在上訴審理階段,南亞科已經提出資料證明,至於Rambus此次提出的侵權告訴,現在還在了解中,但南亞科的立場,會尊重每家半導體廠的專利權,不會有任何侵權的行為。