用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)綜整近20年產官學研的建議,今年7月發布《人類細胞及基因製劑生產變化及可比性試驗》(Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products)指引草案,提供細胞及基因製劑(含組織工程產品)製造商執行可比性試驗依循的標準,做為實際運作上的參考。US FDA並強調若臨床開發與製程開發同步,將會使產品品質提升、產品供應增加或製造效率提高,讓國內外申請商申請新藥臨床試驗(Investigational New Drug, IND)及上市許可有明確的遵循方向。 之所以會需要有此指引的提出,乃是因為現今全球評估生物製劑原料藥或成品在製造品質變更前後的比較,需提供可比性試驗報告,做法上都是參考2004年國際醫藥法規協和會(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH)公布「生物製劑可比性試驗」(ICH Q5E Biotechnological/biological products subject to changes in their manufacturing process: comparability of biotechnological/biological products)指引,但主要適用對象為蛋白質藥品及其衍生物,並不完全適用細胞及基因製劑。 可比性試驗的目的是確保化學製造管制(Chemistry, Manufacturing, and Controls, CMC)變更前後的原料藥或成品,品質需具有高度相似性,才可引用之前的CMC或IND的資料;如果使用的細胞種類、病毒載體及組織工程產品等重大改變,已嚴重影響原料藥或成品的品質,不適用目前的可比性試驗,需重新申請IND或上市許可,將造成申請商需要投入更多的成本,影響產品上市時程。 細胞及基因製劑屬於新興療法,其可比性試驗的審查迄今全球並沒有明確的規範,都是參考ICH Q5E建議,而FDA發布本指引草案正向表列細胞及基因製劑,其驗證確校、安定性及批次變更的可比性依據。讓業者可依循本指引草案,加速細胞及基因製劑的開發、IND申請及產品上市,提升生醫產業的發展。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
歐盟執委會發布2021-2027年歐洲單一市場計畫,加強歐盟內部市場管理2018年06月07日,歐盟執委會對2021年到2027年期間擬定單一市場計畫和預算,該計畫預計支用40億歐元保護歐盟消費者和促進歐洲中小企業(SME)競爭力,同時加強歐盟內部市場管理,促進人類、動植物健康和動物福利,並建立歐洲金融數據統計框架。 新的單一市場計劃包括: 1. 增加中小企業競爭力,促進產業升級、擴大產業規模並幫助中小企業有跨境競爭的能力; 2. 落實消費者保護政策,確保產品安全,並在產品和服務有疑義時,確實協助消費者獲得補償; 3. 支持食品安全生產,預防及根除動植物疾病,以及改善歐盟的動物福利,而歐盟公民得以繼續在歐洲單一市場取得安全和優質的食品,同步提高人類和動植物健康之水平; 4. 加強歐盟執委會和會員國之間的合作,確保歐盟法規範得到適當實施和執行; 5. 響應市場發展,幫助歐盟執委會加強運用資訊科技產業工具與知識(例如大數據和演算法等等)。 6. 補助會員國的統計機構,提供資金給政策領域中與數據相關的發展、製作和傳播,提高歐洲統計數據品質。 歐洲單一市場讓歐洲人民能自由旅行、工作和生活,同時擁有更多的選擇和更低廉的價格,能在歐盟境內更輕鬆地進行商品服務交易。因此,歐洲單一市場可說是歐洲最佳資產,可以促進歐洲企業成長且在全球化市場中培養競爭力。而2021-2027年計畫將確保當地有效達成單一市場連續性,為歐盟人民和企業提供更好的投資與生活環境。
Uber竊取Waymo無人車技術機密一案,法院裁定返還1.4萬筆機密資料Waymo是Google旗下發展無人車技術的公司,其員工Anthony Levandowski(以下簡稱Levandowski)於2016年2月離職並成立自動駕駛卡車公司Otto,而Uber於同年8月以6.8億美元併購該公司,Levandowski則任職於Uber的自動駕駛車部門。 Waymo在收到供應商誤發的電子郵件發現內含Uber的光學雷達(以下簡稱LIDAR)電路板工程圖,據Waymo表示,LIDAR是一種發展自動駕駛不可或缺的雷射感測器,該工程圖與Waymo設計的工程圖非常相似,此為工程師投入上千小時並投入數百萬美元研發而成。Waymo因而於今(2017)年2月對Uber提出告訴,主張Uber竊取其營業秘密與智慧財產,並表示Levandowski離開Waymo前曾使用私人硬碟下載公司上千筆機密資料,尚包括數名離職員工亦曾下載機密資料,且目前都任職於Uber。 今(2017)年5月美國加州北區聯邦地方法院依Waymo提出的有利證據,包含Uber明知或應知Levandowski握有1.4萬筆與Waymo智財相關的機密資料仍聘僱其為員工;且有完整紀錄顯示Levandowski離職前曾下載Waymo機密文件。因此裁定要求Uber限制Levandowski與相關員工使用與本案相關的LIDAR技術,且須於今年5月31日前返還Waymo,其中包含會議紀錄和Levandowski與相關員工電話紀錄。惟Uber仍可持續發展其自動駕駛技術,但賦予Waymo的律師及技術專家有權監視Uber未來的商業發展,並要求Uber必須在同年6月前調查Levandowski完整的LIDAR技術書面與口頭溝通紀錄,並提交給Waymo。 另方面,Waymo在此同時也宣布與Uber在美國的主要競爭對手Lyft建立自動車駕駛員的合作夥伴關係,挑戰Uber乘車服務的市場地位。本案將於今年6月7日進行審判程序,後續值得持續關注。
歐盟智慧財產局出版《防偽技術指南》,協助企業及早防免智財侵權風險歐盟智慧財產局(European Union Intellectual Property Office)之智庫「歐盟智財侵權觀察平台」(the European Observatory)於今(2021)年2月出版《防偽技術指南》(Anti-Counterfeiting Technology Guide,下稱本指南),本指南全面介紹目前市面上防偽技術的內容,技術區分成電子型、標記型、化學型、物理型、機械及數位媒體型等五大防偽技術類別,供所有有興趣了解或欲執行防偽技術的各規模、各領域企業們參考。 仿冒為全球性問題,幾乎威脅到了各領域行業的營運與生存,而全球仿冒品數量在互聯網時代之下,以每年增長15%的驚人速度上升中,已嚴重侵害了企業的品牌商譽與智慧財產權。企業雖懂得以註冊智財權的方式自我保護,但仿冒問題對企業帶來的攻擊性日益增加、防偽技術又多如牛毛且複雜,本指南彙整之資訊,尚補充了關於ISO標準的相關技術資訊,如《 ISO 22383:2020 》(產品與文件之安全性、彈性、真實性與完整性-重要產品認證方案之選擇與性能評估標準)。這些資訊可以跟防偽技術一併使用,精進企業整體防偽策略。 此外,本指南對於彙整出的每項防偽技術或ISO的相關技術標準,都予以清楚介紹,並說明技術主要特性、優缺點、用途、實施條件以及相關成本,企業可透過本指南比較各式防偽技術,從而選定最適合其業務性質的防偽技術,及早防範仿冒風險,以保護企業之業務營運與品牌發展。