用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=57&tp=1 (最後瀏覽日:2026/01/10)
引註此篇文章
你可能還會想看
何謂「IoT推進聯盟( IoT推進コンソーシアム)」?

  日本政府為了對應智慧聯網(Internet of Things, IoT)、巨量資料(Big Data)以及人工智慧(AI)時代之到來,經濟產業省及總務省於2015年10月23日正式成立了產官學研聯合之「IoT推進聯盟( IoT推進コンソーシアム)」。該聯盟旨在超越企業及其產業類別的既有框架,以民間作為主導,目的為推動IoT之相關技術研發,以及促進新創事業成立之推進組織,未來並將針對IoT相關政策以對政府提出建言。在該聯盟下有三個工作小組,包括技術開發、實證、標準化的「智慧IoT推進論壇(スマートIoT推進フォーラム)」;推動先進實證事業,規制改革之「IoT推進實驗室(IoT推進ラボ)」,以及針對資訊安全、隱私保護的專門工作小組。   我國自2011年行政院首度召開「智慧聯網產業推動策略會議」以來,積極推動發展台灣成為全球智慧聯網創新中心,以及成為亞洲智慧聯網解決方案領先國;而目前我國有「台灣物聯網聯盟(TIOTA)」、「中華物聯網聯盟」等民間推進組織,旨皆為結合產官學研各界資源,促進產業與政府、國際間之合作。

澳大利亞政府擬修正《支付系統管理法》將數位支付,如Apple Pay、Google Pay納入法律規範中

澳大利亞國庫部(Department of the Treasury)於2023年10月11日發布《支付系統管理法》(Payment Systems(Regulation)Act 1998)修正草案,擬擴張法案適用主體,將Apple Pay、Google Pay等數位支付或提供此項支付服務事業納入規範,其目的在於提升企業的開放性及責任,並關注大型科技企業在其中扮演的角色。 本次修正案中,將修改現行支付系統的定義及適用主體,擴大至提供支付服務平臺企業,將被視為金融機構受到拘束,並授權澳大利亞準備銀行(the Reserve Bank of Australia,下稱RBA)監管數位支付平臺。修正草案內容整理如下: 1.重新定義「支付系統」。現行法定義為「透過任何形式或方式促進貨幣流通的系統」,草案則納入非貨幣(non-monetary,如數位貨幣)及提供便利支付服務的支付平臺系統。 2.擴大「參與者」定義。現行法規中參與者僅包含管理、運作支付系統的企業,草案則擴張至與支付價值鏈(payments value chain)具直接或非直接相關連之所有企業。 3.現行規範中,僅RBA在可能涉及使用者財務安全及公共利益(下述)考量時,有指定支付系統的職權,並有權監管該支付系統,包含決定新參與者的加入、訂定制度內參與者應遵守的標準及指引、對相關爭議問題進行仲裁等。修法後國庫部部長(Minister)將擁有相同權力。規範所稱之「公共利益」,指有助提升財務安全、高效率並具有競爭性,且不會導致金融體系風險增加。 4.提高法案中刑事處罰的罰金金額。現行法規授權RBA訂定支付制度之相關標準及指引,若制度內參與者未依標準或指引行事,RBA會提出要求企業為特定行為或不行為之指示,仍未依循可能會科處澳幣5,500元的罰金(約臺幣11萬3千元),修法後將提高至2倍,惟罰金之處罰權最終仍須法院審判決定。 我國針對電子支付產業有電子支付機構管理條例、金融消費者保護法規範,並要求第三方支付服務業者落實洗錢防制法規定,避免淪為洗錢或地下匯兌工具,未來可持續觀察澳大利亞及其他國家對於支付平臺議題之討論及發展趨勢,作為我國評估相應治理措施及手段參考基礎。

基因改良作物命運大不同

  身為世上最大基因改良( GMO)棉花生產者的 中國大陸 ,已經批准將經過基因改良的混種棉花進行商業化,預料可以解決生活日用品上的短缺。相對於此, 歐盟 的農業部長們,卻對於是否批准編號1507的基因改良玉米,陷入一個進退維谷的困境。但是經過8年激烈的反對, 丹麥 卻允許基因改良玉米的進口。   而在 美國 有 85﹪的大豆,76﹪的棉花,45﹪的小麥是經過基因改良的。至於 澳洲 農業與資源經濟局則最近則對基因改良作物做出一份報告,認為各省禁止基因改良食品會減小經濟效益,使 澳洲 面對世界各地日益增多的基因改良作物發展,屈居弱勢。至終可能會在十年後造成1.5億到6億澳幣的損失。

英國成立「技術移轉政府辦公室」,以促進公部門知識資產流通利用

  英國技術移轉政府辦公室(Government Office for Technology Transfer, GOTT)於2022年10月設立於英國索爾福德(Salford);其為英國商業、能源與產業策略部(Department for Business, Energy & Industrial Strategy, BEIS)之轄下機構,設立之旨在於促進公部門(public sector)知識資產(knowledge asset)流通利用,以為英國帶來經濟、社會及財政上效益。   所謂「知識資產」係指—智慧財產權、專門技術、資料、品牌、業務流程、專家資源及技術等;目前英國關於公部門知識資產之估值,總計約超過1060億英鎊。而所謂「技術移轉」係指使這些資產與他機構分享,以刺激創新及帶動新產品、流程及服務的研發,並促進更多商業創投(commercial venture)的可能。   GOTT具有跨部門的職權,使公部門可增強其對自身知識資產的辨識、研發與利用,並鼓勵公部門在管理其知識資產上,可更具創新性及具有企業家精神。目前,GOTT已開始與其他公部門在創新上合作,例如一造價更低的高密度真空紫外光(Vacuum Ultra-Violet, VUV)光源機,以淨化水質;或以石墨烯(graphene)製成生物傳感器(biosensor),以使在人體上以生物標記(biomarker)偵測不同健康狀況及疾病。   GOTT係以提供資金和專業知識的方式,以在跨部門政府間,進行創新項目的支持;依據英國政府早先所編列的一「關於政府部門應如何管理知識資產」的指南(The Rose Book: guidance on knowledge asset management in government,下簡稱The Rose Book),GOTT係以「提供對The Rose Book之詢答」、「提供對於管理知識資產之訓練」、「形成關於知識資產之人脈網」、「舉辦活動以喚起對知識資產管理重要性的認識」、「告知不同部門其可能擁有的知識資產及可運用機會」等方式,對公部門進行協助(The Rose Book第8.2點參照)。   而依照The Rose Book第8.4點,GOTT亦將與以下單位,分就上述不同事項,及就知識資產爭訟事件提供建言等,進行合作,以對其他公部門提供協助:(1)英國智慧財產局(Intellectual Property Office);(2)英國國防部(Ministry of Defence);(3)英國犁頭創新中心(Ploughshare Innovations);(4)政府法務處(Government Legal Department);(5)國家檔案館(The National Archives)。   而在後續成果運用上,The Rose Book第6.1點提及,公部門於運用知識資產時,可就很多面向進行考慮。除尋求「商業上的回報」外,亦可將「促進各別部門及不同部門間公共事務之進行」,以及「為商業、慈善團體及人民之使用」一事納入考量,藉以達到經濟、社會及財政上效益;而就「商業上的回報」而言,依照The Rose Book第6.35點,除最常見的「技術授權」及「販賣知識資產」外,亦有「衍生新創公司」(spin-outs)及合資公司(joint ventures)等方式。而一知識資產可如何被適當運用,則可尋求專家意見。

TOP