用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
英國智慧財產局於2017年10月1日修正公布施行智慧財產權不正當威脅法(IP Unjustified Threats Act 2017),使智慧財產權之法規範更具明確及一致性,並協助企業免於昂貴的訴訟費用。 所謂智慧財產權之不正當威脅(unjustified threat)係指無智慧財產權、智慧財產權已過期或無效、或雖未實際發生智慧財產權之侵權事實,卻對他人提起侵權之法律行為或措施,該行為耗費成本、引起市場混亂,致使客戶出走並造成企業合法販售商品或服務之業務停滯,並扼殺智慧財產創新之本質,破壞市場衡平。 因涉及智慧財產侵權之法規範複雜、不明確或不一致,且當有侵權之虞尚未進入司法審判程序前其紛爭難以解決,致使智慧財產權人(特別是擁有智慧財產權之中小企業)不願意實施其權利。因此,修正公布施行智慧財產權不正當威脅法將有助於智慧財產權人或第三人知悉何種行為算是威脅,提供明確之規範框架,鼓勵企業建立商談(talk first)文化,使爭議雙方可交換訊息以解決紛爭,而非興訟。並使企業或個人在智慧財產權爭議中取得公平合理的地位,以保護客戶及供應鏈(包括零售商或供應商),避免企業或個人因不正當威脅、惡性之商業競爭,而遭受損害。再者,智慧財產權之不正當威脅法適用於專利權、商標權及設計權,使智慧財產權法複雜之規範更趨明確且一致。
美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。
日本也有EUA了!新修《藥機法》通過藥物緊急許可制度日本也有EUA了!新修《藥機法》通過藥物緊急許可制度 資訊工業策進會科技法律研究所 2022年06月13日 去(2021)年12年底日本厚生勞動省發布「緊急時藥物許可制度總結[1]」(緊急時の薬事承認の在り方等に関するとりまとめ)文件,就日本藥物緊急許可制度(緊急承認)進行提案,並建議修法。接著,以該制度為中心之《藥物及醫療器材品質、有效性及安全性確保法》(医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律)(下稱藥機法)修正案,在今(2022)年3月經眾議院通過,4月經參議院通過成立,5月20日公布並即日開始發生效力[2]。主要條文規範在新法第14條之2之2及第23條之2之6之2。 壹、立法背景說明 修法之前,日本藥物上市審查有四種管道:一般許可(通常承認)、先驅審查指定制度(先駆け審査指定制度)、附條件許可(条件付き承認)、特例許可(特例承認)。「一般許可」係無特殊情形下之通常上市管道;「先驅審查指定制度」是針對治療嚴重疾病的劃時代創新藥物所創設之優先審查制度[3];「附條件許可」則是針對有效治療方法少、患者數量少的嚴重疾病的藥物審查制度[4];若遇緊急事件需使用藥物則是走「特例許可」管道使藥品能提早上市[5]。 根據去年日本厚生勞動省之調查[6],在傳染病大流行等類似緊急情況之下,日本當時對於藥品核准的對應方式存有兩大問題。 首先是對應的速度不夠快。在緊急狀況下,對於疫苗及藥物等的優先核准制度,即使是日本當時最快的「特例許可」管道,相較於歐美也較為耗時。以對抗新型冠狀病毒的莫德納疫苗為例,該疫苗在美國取得緊急使用授權(Emergency Use Authorization,下稱EUA)之後,約過了5個月才在日本獲得承認;而新型冠狀病毒的治療藥物Sotrovimab於日本國內的核准也晚於美國4個月[7]。 其二是特別許可的適用對象較窄,「特例許可」管道是為已在國外流通之藥品而設計,因此若是日本藥廠自行研發的疫苗、藥物或是療法,均無法依此管道上市。如日本藥廠塩野義所開發的新型冠狀病毒口服藥,即需要透過附條件許可之制度,或新的緊急許可制度加快上市速度。 鑒於前述原因,日本厚生勞動省參考美國EUA,提出了藥物的「緊急許可制度」。此二制度最大共通特點在於其均非藥品的正式上市制度,通過審查之後僅能在一定期間內上市流通,到期之後原則上應下架[8]。 貳、重點說明 緊急許可制度有四大重點[9],說明如下: 一、發動要件:為防止重大影響國民生命和健康之疾病蔓延,及防止其他健康損害狀況的擴大,有緊急使用之必要,且無使用該藥物以外替代手段時,得申請緊急許可。此處所稱之藥物包括了疫苗、治療藥物、普通藥品、醫療器械等產品。且緊急情況並不限於大規模流行性疾病,核事故、放射性污染、生化攻擊等情況亦適用緊急許可制度。 二、運用標準:在臨床試驗確認安全性的前提下,可以不需要完成有效性的完整試驗,得僅就現有的數據及資訊進行有效性之推定。舉例而言,若在海外進行的大規模驗證臨床研究中獲得了顯著的結果,則以日本受試者為主的臨床研究結果為非必要。 三、核准條件及期限:由於在有效性的階段給予核准,為了確保正確使用核准的藥物,應附上條件以及二年內之期限(有再延長一年之可能)。獲得許可後一定期限內若無法確認有效性,且判斷該醫藥品或器材不適合維持許可狀態時,將撤銷許可。 四、加速特別措施:對GMP檢驗、國家認證、容器包裝等採取特殊措施以加快核准速度。如在申請緊急許可當下,GMP檢驗有實施上困難,可以先暫緩,待核准後再補上檢驗程序。 參、與現存制度差異評析 特例許可是在緊急許可推出之前,在緊急情況下能在短期間內讓藥品上市之方式。特例許可是藥品正式上市流程,而緊急許可是在符合條件後暫時性准許上市,故兩者在範圍、運用基準以及期限等規定上存有明顯差異。 首先在範圍方面,特例許可係為了已在國外流通的醫療用品引進國內而設置,因此日本國內企業自行研發的新疫苗或是新治療藥等,無法透過特例許可上市[10],原則上需要透過一般藥物上市管道,因此新制度對於日本藥廠來說,形同多開闢了一條產品上市的道路。其次,在運用基準方面,特例許可應完整確認安全性及有效性,無法如新制般能僅由現存數據及資料推定該藥物之有效性[11],因此新制可以縮短臨床試驗所花費的時間。最後,由於特例許可為正式之上市許可,僅在簡化一般藥物之審查流程至2-3個月,故其無有效期間之規定[12],而依新制度上市之藥品在有效期間內仍須完成剩下的臨床試驗,否則期限屆至時原則上應下市。 肆、未來展望 由於緊急許可制度剛修法通過,日本國內目前尚未有以此管道核准上市之藥物或疫苗,因此核准程序所花費之時程,能否成功縮短至如美國EUA的三週內尚未可知。目前最有可能以此管道核准上市之藥物為日本藥廠塩野義的新型冠狀病毒口服藥,審查結果預計於7月發表[13],其發展究竟如何,值得我們拭目以待。 [1] 〈緊急時の薬事承認の在り方等に関するとりまとめ〉,厚生勞動省,https://www.mhlw.go.jp/content/11121000/000873996.pdf(最後瀏覽日:2022/06/12)。 [2] 日本參議院網站,https://www.sangiin.go.jp/japanese/joho1/kousei/gian/208/meisai/m208080208042.htm(最後瀏覽日:2022/06/12)。 [3] 〈先駆的医薬品等指定制度(先駆け審査指定制度)〉,獨立行政法人醫藥品醫療機器總合機構,https://www.pmda.go.jp/review-services/drug-reviews/0002.html (最後瀏覽日:2022/06/27)。 [4] 〈医薬品条件付早期承認制度への対応〉,獨立行政法人醫藥品醫療機器總合機構https://www.pmda.go.jp/review-services/drug-reviews/0045.html (最後瀏覽日:2022/06/27)。 [5] 同前註1。 [6] 同前註1。 [7] 〈緊急時の薬事承認の在り方について〉,厚生勞動省,https://www.mhlw.go.jp/content/11121000/000856077.pdf(最後瀏覽日:2022/06/12)。 [8] 同前註。 [9] 〈令和4年の医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(薬機法)等の一部改正について〉,日本厚生勞動省網站,https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000179749_00006.html(最後瀏覽日:2022/06/12)。 [10] 医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(昭和三十五年法律第百四十五号)第14條之3第2項。 [11] 同前註4。 [12] 周晨蕙、施雅薰,《科技法律透析》,〈COVID-19疫情下我國藥事法專案核准制度議題-以國際藥物緊急核准上市機制為借鏡〉,第33卷第10期,頁58(2021)。 [13] NHK,〈コロナ飲み薬 塩野義製薬「ゾコーバ」有効性や副作用 承認の可否は〉,2022/06/23,https://www.nhk.or.jp/shutoken/newsup/20220623a.html (最後瀏覽日:2022/06/27)。
「亞馬遜公司(amazon)」積極向美國政府機關推動其所開發的人臉辨識軟體“Rekognition”,將可能造成隱私權的重大侵害亞馬遜公司所開發的“Rekognition”軟體可以進行照片中的人臉辨識識別,單張圖片中可辨識高達一百人,同時可以圖片進行分析及比對資料庫中的人臉長相。目前亞馬遜公司積極向政府機關推銷這套軟體。可能造成的風險是,公權力機構可透過使用“Rekognition”軟體來辨識或追蹤任何個人,警察機關可以隨時監控人民的行為,各城市的政府機關也可能在無合理理由的狀況下隨時查看人口居住狀況,尤有甚者,美國移民及海關執法局(Immigration and Customs Enforcement, ICE)可以使用該軟體來監控移民的狀況,即使是無任何犯罪疑慮的狀況下亦可進行,將政府打造成巨大的監控系統,有造成隱私權嚴重侵害的疑慮。因此無論亞馬遜公司內外都有反對將“Rekognition”軟體推銷給政府機構的聲浪,尤其美國公民自由聯盟(American Civil Liberties Union, ACLU)更是發起多項連署抗議。 支持政府使用“Rekognition”軟體的意見則認為,使用“Rekognition”軟體將可以更有效率地辨識人臉,在尋找失蹤兒童或在公共中辨識出恐怖份子可以發揮更大的作用,不啻是保護公眾法益的進步。 佛羅里達的奧蘭多市警察機構曾經使用“Rekognition”軟體後因契約到期而一度停止使用,於7月9日與亞馬遜公司續約繼續測試使用該軟體,奧蘭多市警察機構宣稱以目前測試階段將不會使用一般民眾的照片進行測試,將不會造成人民的隱私權侵害。