用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=57&tp=1 (最後瀏覽日:2026/01/02)
引註此篇文章
你可能還會想看
國際可再生能源組織發布2021年約旦可再生能源進度評估報告

  2020年7月,約旦能源與礦產資源部發佈「約旦能源綜合戰略(2020-2030)」,主要著重於下列三點:一、提升再生能源發電比例,降低能源進口量。將本地能源發電比例提高,同時降低石油衍生品於能源結構和發電總量中之比例。二、暫停核電項目計畫,未來約旦將不採用傳統來源生產更多之電力。三、降低碳排放量。   而在2021年2月時,國際可再生能源組織(IRENA)與約旦能源與礦產資源部透過視訊會議的討論結果,共同發布一份約旦可再生能源進度評估報告,指出約旦的可再生能源電量自2014年至2020年間,由幾近為零,增長約20%。   上開結果可能與約旦能源與礦產資源部重視太陽光電(PV)和風力發電的政策有關,包括整合產業發展的各種有利條件,如當地產業發展及所需之技術,以使收益最大化。此外,為使未來可再生能源更加增長,同時為了因應電網基礎設施(the grid infrastructure)的發展進度與可再生能源發展的進步不同,創造能源最終用途的需求及使其盡早電氣化,將成為未來政策上最重要的方向之一。

內政部、經濟部發佈「新建建築物節約能源設計標準」,自七月一日施行

美國上訴法院營業秘密判決關於軟體功能之合理保密措施認定

  2022年3月9日美國聯邦第二巡迴上訴法院(下稱上訴法院)於Turret Labs USA, Inc. (下稱Turret) v. CargoSprint, LLC(下稱CargoSprint)案,維持紐約東區聯邦地區(下稱原審法院)的結論,駁回Turret的請求。依照上訴法院判決的結論,確認在原告主張軟體功能被盜用時,必須證明其與軟體供應商及使用者均簽訂保密協議,始符合保護營業秘密法(Defend Trade Secrets Act,DTSA)所定之營業秘密。   2021年2月Turret指控CargoSprint及其CEO,以詐欺的方式,進入其授權Lufthansa Cargo Americas(下稱Lufthansa)使用的Dock EnRoll軟體,並對於軟體的技術資訊及演算法,進行逆向工程,盜用其營業秘密。CargoSprint則抗辯Turret所主張者,不成立營業秘密。   對於軟體功能的合理保密措施認定標準,不論是原審法院及上訴法院均指出,應在於「誰被允許接觸」及「保密協議」。首先,對於「誰被允許接觸」之認定,原審法院指出Turret完全把軟體控制權委由Lufthansa,而Lufthansa使其顧客了解Dock EnRoll軟體功能。上訴法院則指出雖然Lufthansa已限制僅得貨運代理相關的使用者,能夠接觸軟體,但Turret並不能證明其與Lufthansa達成協議,由Lufthansa作出前述的軟體使用者限制。其次,對於「保密協議」之認定,不論原審法院及上訴法院均指出Turret未能證明其與Lufthansa及其他軟體使用者已簽訂保密協議。綜上所述,兩審級法院均認為Turret未採取合理保密措施。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟執委會正式提案,授權各國決定是否開放種植基因改造作物

  歐盟執委會於7月13日正式提案,會員國得在各自領土範圍內決定准許、限制或全面禁止基因改造作物的栽種。執委會的提案內容包括對於基因改造作物與非基因改造作物的共存(在同一區域內栽種)管制建議,同時也提出修正條文草案建議供各國於修正各國內有關基因改造作物相關法律的參考。執委會的提案修正了歐盟2001/18/EC指令(Directive 2001/18/EC)使得各會員國可因地制宜考量,自行決定基因改造作物的允許栽種與否。   執委會的提案源自今年三月時對會員國的承諾。歐盟健康與消費政策委員會的主席表示,執委會此提案兌現了當時要在今年夏天結束歐盟各國對基因改造作物的爭議的承諾,此同時他也強調歐盟現行以科學為基礎的授權機制並非完全廢除,全面性的安全評估與監控系統仍繼續運作,這也是歐盟對基因改造作物耕種給予各國彈性措施的同時對安全基本把關的表現。   歐盟原有的規定訂有基因改造作物與非基因改造作物0.9%共存門檻(labellingthreshold,指由受驗作物全部基因中所含改造基因的比例判斷是否為基因改造作物的標準),各會員國必須立法採行有關措施(如作物田的間距)以符合該項要求。 但過去幾年的運作經驗發現,耕作非基因改造作物農民的潛在損失並不限於因為所產作物超過該門檻,某些案例中,基因改造有機物殘存於食品中,反而使得想要將食品以不含基因改造有機物產品販賣者造成損失。執委會新的建議案給予各國調整該共存門檻的權力,同時,各國也可以成立非基因改造專區等。2001/18/EC指令的修正條文(第26b條)將適用於所有的基因改造有機物,各國得自行決定限制或禁止其境內的基因改造作物耕種,無須執委會的授權,但須在境內措施施行一個月內通知歐盟各國及執委會。執委會的提案將在歐洲議會及歐洲理事會通過後正式施行。   對於此一即將於歐盟施行的新基因改造作物耕種規範,生技產業顯然有不同意見,依照生技業者協會EuropaBio的聲明,他們認為新規範充滿對新科學的偏見且阻礙農民的自由選擇權。基於產業的觀點,新的規範架構也有疑慮,例如:0.9%的門檻下放各國自行決定調整,往後將引起權責機關以及農民、買家、以及有關產業製造商之間的爭議;新措施也造成對歐盟內部市場的壁壘—造成歐盟境內國家的或區域的限制林立,而與歐盟的基本原則相悖;最後,對於科學的偏見與歐洲食品安全局(EFSA)的聲譽之影響也是一大隱憂。   歐盟對基因改造作物的立場一直尚未定調,新規範亦僅只是採取「下放」給各國自行決定的作法,惟實際上的運作,綜合當前對基因改造作物之安全性充滿疑慮與爭議的氛圍下,各國未來自行訂定規範將更寬或更嚴,後續發展如何有待密切觀察。

TOP