用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=57&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
談我國基因改造生物田間試驗管理規範之現況與修正方向

FCC將推動Gigabit城市

  美國被視為科技最為先進的國家,但從平均連網速度落後於荷蘭、韓國,可發現美國寬頻基礎建設並未想像中出色。因此,為了加速高速寬頻服務的發展,FCC主席不僅於2010年推動「寬頻加速計畫」(Broadband Acceleration Initiative)外,在今(2013)年1月28日,主席Julius Genachowsk更宣布推動「挑戰Gigabit城市」(Gigabit City Challenge)計畫,使民眾能享有更好的網路品質。    「挑戰Gigabit城市」規畫於2015年全國50個州均至少有1個具備Gigabit服務的社區,且使既有高速固網頻寬提升100倍。此外,FCC希望藉由「關鍵多數」(Critical Mass),使業者具有獲利之基礎,促進新興應用與服務發展,以帶動美國經濟成長與強化國際競爭力。   目前,FCC並未就此計畫編列基礎網路建設預算,但將設置兩個單位,促進「挑戰Gigabit城市」之目標達成:   1.線上資訊網(Online Clearinghouse):蒐集與宣傳如何可降低成本與增加網路速度之資訊,以促進寬頻網路規劃(含Gigabit社區)。   2.發展中心(workshops):發展中心將成立於Gigabit 社區,並邀請寬頻提供商與州、市之領袖共同評估Gigabit 社區的成立門檻、增加投資與降低成本,以提供FCC相關資訊。   現階段,美國共有14個州、共40個社區有Gigabit連接服務,包含Google去(2012)年底於坎薩斯城(Kansas City)建設、以及西雅圖在翡翠城(Emerald City)設置試點區,可見Gigabit寬頻將逐漸成為美國趨勢。FCC預計Gigabit服務推動後,將可解決新興產業,例如遠距醫療、遠距教學、高畫質影音與線上服務,受限於連網速度外,亦可紓緩美國失業率與財政困境。

澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告

  澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。   報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含: 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。   未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。

美國最高法院肯定電玩同樣受到憲法第一修正案言論自由之保護

  美國最高法院日前針對Brown v. EMA & ESA(即之前的Schwartzenegger v. EMA)一案作出決定,確認加州政府於2005年制定的一項與禁止販賣暴力電玩(violent video games)有關的法律,係違反聯邦憲法第一修正案而無效。   該加州法律係在阿諾史瓦辛格(Arnold Alois Schwarzenegger)擔任加州州長時通過。根據該法規定,禁止販售或出租暴力電玩給未滿18歲的未成年人,且要求暴力電玩應在包裝盒上加註除現行ESRB分級標誌以外的特別標誌,故有侵害憲法第一修正案所保障的言論自由之虞。本案第一審、第二審法院均認定加州「禁止暴力電玩」法案係屬違憲。   而最高法院日前於6月27日以7比2的票數判決,肯定下級審的見解。最高法院認為,電玩(video games)係透過角色、對話、情節和音樂等媒體,傳達其所欲表達的概念,就如同其他呈現言論的方式(如書本、戲劇、電影),皆應受到憲法言論表達自由原則之保護。   因此,對同樣受到憲法保障的遊戲內容表達,只有在有重大(值得保護)的公益須維護時,才能對其加以限制;同時,限制手段亦須通過最嚴格的審查標準(stringent strict scrutiny test)。最高法院認為,本案中加州政府並無法證明有重大(值得保護)的公益存在,且以法律禁止販賣的手段也無法通過審查標準。   如同美國娛樂軟體協會(ESA)CEO Michael D. Gallagher所說,政府不應採取立法禁止的方式,限制遊戲內容的表達自由;反之,美國電玩產業一直以來都遵守一套自願性的分級制度(Entertainment Software Rating Board rating system),藉以提供消費者有關遊戲內容的資訊。這套分級制度已足以協助家長從包裝盒上辨認出遊戲內容,確保未成年人不接觸不適宜的遊戲。   判決出爐後,產業界紛紛表示這是對遊戲產業的一大勝利。本案也證明,即使面臨日新月異科技發展的挑戰,憲法所保障的言論自由表達原則,同樣適用在新興科技的表現媒介。

TOP