用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
2014年12月19日,印度官方智財政策智庫公佈草擬的國家智財政策,該智庫成員囊括法官、律師等智財領域專家。草案的主要口號,為打造「創新印度」! 為達成利用智慧財產權,推動國內先進技術發展之目標,配合「國內自產自銷」、「推動數位內容軟實力」等相關政策,草案提出8大智財政策改革面向,包含:「智財意識推廣」、「智財創造」、「新智財法令與法制架構」、「智財管理運用」、「國內創新商業化」、「智財執法」、以及「智財人力培育」等。其中值得注意的,為根據印度專利局資料顯示,印度專利申請案統計中有75%的申請來源為國外,印度智財政策智庫認為,這對國內創新與科技產業、學研機構來說是個警訊,應強化國內研發人員對於商業化與智慧財產權的相關知識;並且,對於促進智財權創造以及技術商業化,草案亦提出研發補助、租稅減免方案,期能增進國內智財創新動能;最後,因應增加國內專利申請數量與品質之目標,提昇國內專利審查能耐,即為必要配合之政策。 我國2013年推出智財戰略綱領至今,已進入第3年,面對國際上瞬息萬變的市場與法制環境,新興市場如印度最新作出之智財政策,對我國政府具有一定參考價值。
因應知識經濟社會 日本推動司法改革鑑於社會態度轉變與經濟面的需求,特別是隨著稅法和智慧財產權問題日益複雜,日本企業領袖紛紛延攬龐大的律師團,以借助其專長規劃並解決相關問題,以至法律專業人才需求更甚於以往。為此,日本改變壓低律師人數以及不鼓勵興訟的政策,大刀闊斧推動二次世界大戰以來最大的司法制度改革。本次司法制度大改革廣開職業考試大門,以便有足夠的律師、檢察官與法官,能在日益好訟的日本社會處理龐大民、刑事案件。 為填補需求缺口,日本政府決定將包括律師、檢察官和法官在內的法律專業人士的人數提高一倍以上,在 2018 年以前增至五萬人。同時,重大刑案將在 2009 年引進陪審團制度,以減輕法官負擔。在政府鼓勵下,日本第一所美式法學院於 2004 年成立,現在全國已有七十二所類似的法學院。過去日本大學法律系通常著重法律的學術或理論面,而新式法學院的重心則以實務訓練為主。這些法學院的畢業生不必考舊律師考試,只考專為他們設計的筆試。 我國法學教育改革研議已有幾十年,總統府人權諮詢小組在討論人權問題時,亦有專題涉及法律人養成與司法制度改革,因而研議全盤改革相關制度;行政院經建會在重要人才培育與運用的政策中,亦研擬自去( 94 )年開始推動法律專業學院制度。
美國聯邦通訊傳播委員會完成空白頻段干擾測試美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)於今(2008)年初完成700MHz頻譜拍賣後,在8月份針對空白頻段(white space)中可用以抗干擾之技術進行測試,並於8月11日完成測試。完整的測試報告預計將在9月份公布。FCC並可望在未來幾個月內表決是否開放空白頻段。 所謂「空白頻段」係指無線電視數位化之後,位於各電視頻道之間未被使用之閒置頻段。Google、Motorola、Microsoft等公司近一、二年來持續遊說FCC開放空白頻段(white space)免執照使用,以促進無線寬頻服務之發展。 儘管數位無線電視台及Verizon等正使用該頻段之業者有干擾疑慮,然主張開放空白頻段之公司深信開放空白頻段對於新興無線寬頻服務之發展將大有助益,且透過感測技術(sensing technology)或地理定位科技(geolocation technology),即可使得無線裝置於使用空白頻段之同時,不至於干擾數位無線電視台或其他取得執照使用該頻段之業者。 關於試驗結果,無線麥克風業者Shure之資深公關經理Mark Brunner 表示,感測技術幾乎完全無法準確偵測使用中之無線麥克風或電視頻道是否正播送中,自然無法避免干擾發生。支持開放空白頻段之Motorola公司則表示,儘管感測技術無法避免干擾發生,但是Motorola所使用之地理偵測科技則在測試中被證實可有效避開正在使用中之頻段,避免干擾情況發生。
華碩因路由器資安漏洞遭起訴一案與美國聯邦貿易委員會達成和解美國聯邦貿易委員會(Federal Trade Commission, FTC)於2014年間以路由器(Router)與雲端服務的安全漏洞,導生消費者面臨資安與隱私風險之虞,而依據《聯邦貿易委員會法》第5條(Federal Trade Commission Act, 15 U.S.C. § 45(a))委員會防止不公平競爭違法手段(unfair methods of competition unlawful ; prevention by Commission)之規定,即華碩涉嫌行使不公平或詐欺的手段致影響商業活動之公平競爭為由,對我國知名全球科技公司華碩電腦股份有限公司(ASUSTeK Computer, Inc.)進行起訴 。 本案歷經FTC近二年的調查程序後,華碩公司於2016年2月23日同意FTC的和解條件,即華碩公司應針對部分存在資安疑慮的產品依計畫進行改善,並且於未來20年期間內須接受FTC的獨立稽核(independent audits)。 FTC於該案的起訴報告中指出,華碩於銷售其所生產的路由器產品時,曾對消費者強調該產品具許多資安保障措施,具有得以防止使用者不受駭客攻擊等效果;然而,該產品實際上卻具有嚴重的軟體設計漏洞,使駭客得以在使用者未知的情況下,利用華碩路由器的網頁控制面板(web-based control panel)之設計漏洞,任意改變路由器的安全設定;更有專家發現駭客於入侵華碩製造之路由器產品後,得以強佔使用者的網路頻寬。 此外,華碩允許使用者沿用路由器產品的預設帳號密碼,再加上華碩所提供的AiCloud與AiDisk雲端服務功能,讓使用者得以隨身硬碟建立其私有的雲端儲存空間,使得駭客得藉由上述華碩路由器的設計漏洞直接竊取使用者於隨身硬碟內所儲存的資料。FTC並於起訴聲明中指出,駭客利用華碩路由器產品與相關服務的漏洞,於2014年間成功入侵超過12,900多位產品使用者的雲端儲存空間。除此之外,使華碩更加備受譴責的是,當該漏洞被發現之後,其並未主動向產品的使用者強調產品存在該資安問題,更未告知使用者應下載更正該設計漏洞的軟體更新,因此FTC始決定對華碩進行起訴。