用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=64&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
日本ZEON股份有限公司宣布加入「對抗COVID-19智財宣言」

  日本ZEON公司於2020年10月19日發表加入「以智慧財產協助控制新冠病毒傳染對策宣言(對抗COVID-19智財宣言,OPEN COVID-19 DECLARATION)」,以達到共同抗疫之目的。   該宣言是由ジェノコンシェルジュ京都株式会社(GENO CONCIERGE KYOTO)所發起,期望透過加入該宣言的企業,於以終結新冠肺炎蔓延為目的所為之產品開發、製造及販賣,宣示不行使企業所擁有相關發明、新型及設計專利權和著作權等權利。如此一來,將可建構友善的防疫產品開發及製造環境,讓開發者或製造商免去來自權利人的侵權調查或繁複的授權流程。 目前已有包括Canon、Nikon、SONY、CASIO、Panasonic、大金空調、豐田、三菱、速霸路、馬自達等101間知名企業加入,並擁有高達927,897件的專利數量。   經產省近畿經濟產業局也與該宣言辦公室合作,提出對抗新冠肺炎計畫,計畫主軸在於以下三點: 從加入宣言的所有專利中,挑選易於活用的技術並提出施行的可行方案。 協助中小及新創企業與加入宣言的企業對談,支援權利交涉。 協助擬定授權契約及業務展開等必要策略。   我國在經濟部智慧財產局全球專利檢索系統(GPSS)全新提供「防疫專區」服務,以目前防疫需求較大的產業如「口罩」、「防護衣」、「檢測」、「疫苗」、「藥品」等14項作為分類主軸,提供「一鍵查詢全球防疫技術相關專利」及「防疫技術相關專利新訊訂閱」功能,協助產業界快速掌握全球防疫技術相關專利。

建立基因資料庫 台灣可行

  賽雷拉( Cel-era)公司創始人溫特克萊首度來台,他是四年前完成人類基因體解碼的靈魂人物,他建議可運用基因解碼技術,建立基因資料庫,解決台灣醫療資源浪費。   事實上,早在2004年2月行政院科技顧問組為追蹤研究國人常見疾病與基因之間的關係,宣布推動「台灣疾病與基因資料庫」建置計畫。希望透過該基因資料庫的建立,確實掌握國人致病基因,奠定基因治療基礎,除了有效節省醫療資源浪費,更可鎖定特有亞洲疾病為研發重心,作為生技產業發展的優勢利基。台灣人口數約有二仟多萬,且具有完整健全的全民健保及戶籍資料,再加上台灣生物科技產業技術的蓬勃發展,想要建立大型的基因資料庫技術性應相當可行。國外有冰島和英國等多國發展之經驗可參考。   由於涉及人權自主、個人隱私、安全保密、社會倫理、研究成果的利益分享、以及由誰來擔任執行單位等方面的爭議,加上目前國內法令規範不足,既有相關法令多為位階較低的指導性公告,確實有必要建置相關配套制度及法律,以協助該計劃落實執行與發展。

美國「潔淨能源製造推動方案」

  美國的「潔淨能源製造推動方案」(Clean Energy Manufacturing Initiative, CEMI) 係由能源部自2014年起推動,目標是在強化美國製造業之競爭力的同時,促進經濟成長與能源目標及能源安全的達成。潔淨能源製造推動方案係以創新及排除市場障礙為核心目標,相關行動包括:(一)技術研發:能源部在推動方案下針對製造業的研發提高補助金額;(二)新型創新模式:推動方案旨在透過公私夥伴計畫與製造創新量能的提生,促進美國境內潔淨能源製造創新基礎設施之共享;(三)競爭力分析:經由競爭力分析挹注研發投資與確認對於潔淨能源製造而言至關重要之助力與阻力;(四)溝通與意見徵詢:推動方案特別強化與利害關係人間的廣泛對話,以修正其推動策略,並確認政府與民間部門能經由哪些途徑以共同合作來提升美國在潔淨能源製造上之競爭力;(五)能源生產力之技術支援:能源部向製造商進行能源生產力資源上的投資,這當中包括技術支援與市場領銜計畫。在我國之相關發展上,2015年11月26日於北京舉辦之「兩岸工業發展和合作論壇」,經濟部工業局表示,論壇聚焦於智慧製造與綠色製造,兩岸可針對工業發展過程中,例如材料、監控、生產流程等方面,整合雙方技術特點共同解決。

OECD 發布2015年科學、科技與產業計分板,建議各國政府應增加對於創新研發之投資

  於2015年10月19日,經濟合作與發展組織(OECD)發布最新2015年OECD科學、科技與產業計分板(OECD Science, Technology and Industry Scoreboard 2015),此份報告指出,各國政府應增加對於創新研發的投資,以發展工業、醫療、資通訊產業的新領域科技,也將為氣候變化等全球性挑戰提供急需的解決措施。該報告數據顯示,美國、日本和韓國在新一代突破性科技方面具領先地位,即智慧製造材料、健康、資通訊技術這些有潛力改變現有進程的領域,尤其是韓國,最近在這些領域獲得了重大進展。自2000年以來,韓國的公共研發支出增加二倍之多,2014年GDP佔比達1.2%。反觀,許多發達經濟體的公共研發支出卻停滯不前,2014年OECD經濟體公共研發GDP佔比平均水平低於0.7%。   於2010-12年間,在智慧製造材料、健康和新一代資通訊技術領域,在歐洲和美國申請專利家族(patent families)中,美國、日本和韓國共佔到65%以上,接著是德國、法國與中國。2005-07年,韓國在這三個領域的專利家族申請數表現出最為強勁。在資通訊技術領域,韓國正致力於推動智慧聯網技術,歐盟是量子計算,中國則是巨量資料。於2013年OECD國家總研發支出實際增長了2.7%,達1.1萬億美元,但其GDP佔比與2012年相同,為2.4%。這一增長主要來自企業研發投入,而政府研發投入受到了預算合併等措施的影響。創新不止依靠研發上的投入,也依靠互補性資產,如軟體、設計和人力資本,即知識資本(knowledge-based capital, KBC)。知識資本投入已證實可抵抗經濟危機的衝擊,且2013年的數據表明各個經濟行業都增加了對知識資本的投入。但自2010年以來,許多發達國家政府資助或實施的研發減少或停滯不前。OECD警示,研發支出的減少對許多發達經濟體科技研發系統的穩定產生了威脅。鑑於OECD國家70%的研發來自企業部門,也傾向於關注特定應用程序的開發,從而改進先前的OECD計分版本,此份報告強調政府有必要保持對更具開放性的“基礎研究”的投入,始能激發與一些潛在用戶相關的新發現與新發明。

TOP