用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
2024年9月1日,澳洲生效《政府負責任地使用人工智慧的政策》(Policy for the responsible use of AI in government,下稱政策)。澳洲數位轉型局(Digital Transformation Agency,以下稱DTA)提出此政策,旨於透過提升透明度、風險評估,增進人民對政府應用AI的信任。 1. AI之定義 此政策採經濟合作暨發展組織(OECD)之定義:AI系統是一種基於機器設備,從系統接收的資訊進而產出預測、建議、決策內容。 2.適用範圍 (1)此政策適用於「所有非企業的聯邦個體(non-Corporate Commonwealth entities, NCE)」,非企業的聯邦個體指在法律、財務上為聯邦政府的一部分,且須向議會負責。此政策亦鼓勵「企業的聯邦實體」適用此政策。 (2)依據2018年國家情報辦公室法(Office of National Intelligence Act 2018)第4條所規定之國家情報體系(national intelligence community, NIC)可以排除適用此政策。 3.適用此政策之機構,須滿足下列2要件 (1)公布透明度聲明 各機構應在政策生效日起的6個月內(即2025年2月28日前)公開發布透明度聲明,概述其應用AI的方式。 (2)提交權責人員(accountable official,下稱AO)名單 各機構應在政策生效日起90天內(即2024年11月30日前)將AO名單提供給DTA。 所謂AO的職責範圍,主要分為: I.AO應制定、調整其機構採取之AI治理機制,並定期審查、控管落實情況,並向DTA回報;鼓勵為所有員工執行AI基礎知識教育訓練,並依業務範圍進行額外培訓,例如:負責採購、開發、訓練及部署AI系統的人員,使機構內的利害關係人知道政策的影響。 II.當既有AI 應用案例被機構評估為高風險AI應用案例時,通知DTA該機構所認定之高風險AI應用案例,資訊應包括:AI的類型;預期的AI應用;該機構得出「高風險」評估的原因;任何敏感性資訊(any sensitivities)。 III.擔任機構內協調AI的聯絡窗口 IV.AO應參與或指派代表參與AI議題之政策一體性會議(whole-of-government forums)。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本推動智慧醫療照護與巨量資料應用之趨勢觀察 美國FDA公告食品營養強化物添加之指導原則添加營養素到一般之食物中,對於維持或增進整體食物之營養品質來說,是一個非常有效率之方式。然而,不當添加或濫用這些外加之營養素,卻可能造成消費者過度或不足攝取某些特定之營養成分,甚至更可能造成某些食物之營養價值有誤導或詐騙消費者之嫌。 美國食品藥物管理局(Food and Drug Administration,以下簡稱FDA)為了統一回應食品廠商、其他聯邦主管機關以及相關學會之問題,針對添加到食物中之必需營養補充品,在2015年11月6日公告了一份指導原則(Questions and Answers on FDA’s Fortification Policy)。本指導原則以Q&A之形式呈現,,列出FDA對於食品營養強化物(Fortification of Foods)政策之態度(並未變更其自1980年代以來對於食品營養強化物之向來立場)以及建議遵循規定。 FDA建議食品營養強化物添加之基本原則如下:校正飲食之缺陷;補充因食物於處理、流通之過程中所喪失之營養素;根據食物整體熱量計算之結果,均衡添加各種食品營養強化物等。 本指導原則僅適用於人類使用之食品,動物用食品並不在其建議範圍內;另外,其亦不適用於嬰幼兒配方或是一般之保健營養品,其僅適用於一般常規之食物,例如:牛奶、果汁、豆漿、麥片、麵包、通心粉、乳瑪琳等。但是要注意,針對一些新鮮的食物或本身即非營養的食物,例如:新鮮蔬菜、魚肉類、糖、甜點、碳水化合物等,並不建議再額外添加食品營養強化物。 另外,只有人體所必須的營養素(essential nutrients)才可額外添加到常規的食品中,亦即所有添加物都須依據膳食營養素參考攝取量(Reference Daily Intakes;RDI)所規定之種類及建議量,做適當的添加;且添加物必須合法且安全。 食品營養強化物之標示,則必須依據食品標示相關法規恰當為之,不可出現會誤導消費者的任何詞彙,也不宜做出任何可以預防營養素缺乏之陳述,因為這麼做可能使消費者誤認有添加物的食品其營養成分較原始食物高。 本指導原則對廠商並無強制力,然要是廠商有違反本指導原則之情形,FDA將會發出警告信,顯示出FDA強烈建議廠商遵守本指導原則之決心。
歐盟提出「一般資料保護規章」(草案)並審議,以因應未來聯網環境趨勢為因應近來智慧聯網(IoT)、巨量資料及雲端運算發展趨勢,為強化線上隱私權利及促進歐盟數位經濟的發展,歐盟執委會於2012年1月25日對於資料保護指令提出新的規章草案:「保護個人有關個人資料處理及自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation)),以取代並廢除(repealed)原有「個人資料保護指令」規範,並修改(amend)「隱私與電子通訊指令」,預計在2013年6月進入歐洲議會、理事會及執委會的三方協商,若順利將在2014年通過,並在2016年生效。 「一般資料保護規章」(草案)中對於聯網環境及智慧化設備運行之因應,重要規範內容有(1)追蹤(tracking)與特徵分析(profiling):訂定第20條「特徵分析措施」(Measures based on profiling)規範條文,保障每個當事人皆有主張不被採取特徵分析措施(如個人傾向、工作表現、財務狀況、位址、健康、個人喜好、可信度)而致產生法律效果或顯著影響該個人的權利(2)被遺忘及刪除權(right to be forgotten and to erasure):訂定第17條,創設新的權利「被遺忘及刪除權」,用以幫助民眾處理線上資料,當其不希望自己的資料被利用且無合法理由保留時,資料將被刪除(3)資料可攜權利(the right to data portability):訂定第18條,當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料,更容易自不同服務提供者間移轉個人資料。(4)當事人的同意要件:第4條第8款明定,不論何種資料處理情況時所需的同意,增列必須是明確(explicitly)同意之要件(5)「設計階段納入隱私考量」(privacy by design)、「預設隱私設定」(privacy by default):訂定第30條,要求資料控制者及處理者應實行適當的技術性、組織性措施,並考量科技發展水準,制定特定領域及特定資料處理情況的標準及條件,並且資料保護將會從產品及服務最初發展、設計時就考量隱私問題應對「設計階段納入隱私考量」及「預設隱私設定」提出標準及條件。 歐盟此次對於「一般資料保護規章」(草案)的修法進程,以及世界各重要國家的立場及反應態度,均值得後續密切觀察研析。