用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
為檢視國內先進製造業復甦與計畫推進之近況,美國先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於今年(2015) 6月10日研提現況檢討報告與相關政策資料,該項報告主要可歸結「國內產業現況」、「計畫執行成效」與「法制組織」等重要面向 ,茲就該項報告之重點摘要如下: (一)國內先進製造產業現況檢視: 報告指出美國目前正喪失在先進產品領域全球領導地位,在進出口貿易呈現嚴重赤字,雖近年致力於先進製造之資源整合與共同研發等措施,然而,觀察基礎科研端到市場端仍存有落差。 (二)先進製造領域已設立45個研發創新中心: 研發創新中心為產業與學研機構共構之「區域應用性組織」,主要由學術研究聯盟、企業和區域管理機構所組成專注於扶持區域具經濟優勢之新興技術研發,發展在地技術能量。先進製造領域,截至目前為止,已設立45個研發創新中心。除透過研發創新中心之扶持外,另可透過中心之設立選定各該重點關鍵技術發展,間接培育美國各區域之先進製造技術之專業領域。美國境內研究型大學或非營利組織皆得提案申請,而獲選之區域創新研究機構可獲得聯邦政府5至7年資金補助,政府欲透過補助模式,扶持區域新創機構之自主運作與發展。而於七年發展階段後,該機構將形成財政自主,由該機構之行政委員會主導研發資金運用與分配。
美國為遏止專利濫訟通過創新法案(The Innovation Act of 2013)美國眾議院今年(2013)12月5日通過創新法案(The Innovation Act of 2013,H.R. 3309),主要目的在於填補美國發明法(Leahy-Smith America Invents Act,AIA)對於遏止專利濫訟之不足。創新法案中達成立法目標之核心手段主要有以下五個方向。 1.限縮提訴要件,要求提起專利訴訟,必須說明遭侵權之商品以及遭侵權之情形,特別是針對專利侵權之因果關係的說明,以不實施專利主體(Non-practice Patents Entity,NPE)不生產製造專利產品之特性遏止其專利濫訟。 2.訴訟費用的轉移,將相關成本轉移至敗訴方,並加諸合理之賠償費用。直接以訴訟成本之轉嫁來影響訴訟意願,然而此舉是否造成真正之專利所有者保護自身專利之障礙仍須觀察個案。 3.延遲證據開示,避免證據開示過早影響判決之結果。 4.要求專利所有者持續針對所有之專利進行資訊更新,使專利所有權透明化,以揭露NPE藉由空殼公司進行濫訟之行為。 5.創新法案另試圖使專利產品之實際製造商代替消費者面對專利侵權時相關產品之訴訟。 而眾議院通過創新法案的同時,參議院也有相類似的平行立法提案,稱為專利透明化與改進法案(The Patent Transparency and Improvement Act of 2013,S. 1720)。比較參眾兩院之法案版本後,可以發現兩者立法目的以及採取的手段均類似,主要都集中在於資訊的透明化以及訴訟成本的轉嫁,試圖藉由除去專利訴訟有利可圖的情形遏止專利濫訟的現象,但是參議院版本之法案是否真的能夠達到遏止專利濫訟之情形受到各界更多的爭議。
美國國家標準與技術研究院「隱私框架1.0版」美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。 NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。 本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。
美國產業安全局放寬對敘利亞的出口管制措施美國產業安全局(Bureau of Industry and Security)於2025年9月2日發布《放寬對敘利亞的出口管制》(Relaxing Export Controls for Syria)最終細則,此最終細則依《總統行政命令第14312號》(E.O.14312)修訂、放寬《出口管制規則》(Export Administration Regulations,以下簡稱EAR)對敘利亞的出口管制措施。 此次的修訂放寬重點如下: 1. 新增或擴大對敘利亞出口、再出口的許可例外(license exception)範疇 (1) 針對EAR第740部分為新增和擴張,如新增有關於敘利亞和平與繁榮(Peace and Prosperity)的許可例外,擴大EAR第740.9條許可例外之範圍至與消費性通訊裝置(Consumer Communications Devices)相關的貨品及軟體; (2) 為了允許對敘利亞出口、再出口新增的許可例外情況,修訂EAR第746.9條第b項一般限制條款。 2. 對敘利亞出口、再出口採取更寬鬆的許可審查 (1) 於EAR第746.9條第c項第1款特定最終使用情況(如電信通訊、水供應和衛生、電力等)採取推定同意(presumption of approval licensing); (2) 其餘最終使用的出口和再出口許可申請,依EAR第746.9條第c項第2款以逐案審查(case-by-case)的方式為之。 3. 刪除部分條文 例如EAR第746.1條第a項第3款刪除適用《第二號一般命令》(General Order No. 2.)之內容,而交叉參照EAR第746.9條。