用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
新加坡政府科技局(Government Technology Agency of Singapore, 下稱 GovTech)在2017年8月21號提出智慧國家的5個策略性國家計畫,指出為了建立數位國家,政府將會更加注重基礎建設的整合途徑,未來將聚焦5項計畫: 國家數位身分(National Digital Identity)系統,使市民和工商業可以更加安全與便利的方式進行交易。未來的六個月,在現有的SingPass交易系統上, GovTech將會進行關於行動軟體代碼(software-token)試驗,並在五年後大量適用此種服務。 增進數位支付(e-Payments)功能。新加坡金融管理局(Monetary Authority of Singapore, MAS)將會與銀行和私部門合作,建立各種數位支付管道。例如簡化數位支付並布建統一銷售終端(Unified-Point-of-Sales, UPOS),預計將於18個月內設置25000個終端,使多種銷售方式可透過單一終端進行。 智慧國家感測器平台(Smart Nation Sensor Platform),加速感應器與其他物聯網的布建,使城市更加易居住與安全。GovTech將會建立智慧國家感測器平台,並增進基礎建設與分析能力,並與LTA合作目在未來18個月測試智慧聯網路燈站於選定的區域進行布建,五年內讓蒐集之數據提供工商業發展產品與服務供公眾使用。 建立智慧城市移動(Smart Urban Mobility)交通系統,包含已在2017年中建立的共通車隊管理系統(Common Fleet Management System),將使用數據和數位科技,包含AI和自駕車來增進公眾運輸系統。 生活的時刻(Moments of Life)服務,透過政府間數據共享,跨部門和各種政府相關的數位服務結合,提供市民個人化的數位服務。
Comcast可能因違反FCC之網路開放原則而受罰美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)主席Kevin Martin於今年(2008)7月11日表示,就Free Press、Public Knowledge、ConsumersUnion等消費者權益促進團體向FCC投訴有線電視系統業者Comcast故意阻擋BitTorrent之流量違反FCC之網路開放原則一案,他將建議FCC要求Comcast揭露其相關行為,並提醒用戶其過濾流量之行為與方式。 2007年11月時,Free Press、Public Knowledge、ConsumersUnion等消費者權益促進團體向FCC投訴有線電視系統業者Comcast故意阻擋P2P流量的行為已經違反FCC於2005年時發佈之網路開放原則。該網路開放原則包括消費者有權透過網路接近任何合法內容;消費者可透過網路自由使用任何合法之應用服務;消費者可自由將任何合法之設備與網路連接;消費者有權在各網路、應用服務或內容提供者間自由選擇。 針對前述投訴,一開始Comcast矢口否認有任何阻擋P2P資料流量之行為,隨後Comcast則改口其對於P2P資料流量之「延遲」乃是一種合理的網路管理(reasonable network management),並不違反FCC之原則。 嗣後,FCC於今年(2008)1月份公開徵求公眾意見,並持續就此一申訴進行調查。Comcast亦在6月份公布新的網路管理政策,其表示未來將不再針對特定伺服器進行網路管理,而是改以網路流量使用較高之用戶為目標,以過濾垃圾郵件、偵測惡意程式或流量以防止病毒散佈、限制或暫時延遲P2P資料流量等方式以控制或限制網路使用。
什麼是「瑞典創新夥伴計畫」?瑞典創新夥伴計劃(Innovation partnership programmes),起源於瑞典企業與創新部下屬的國家創新委員會所強調的三個社會挑戰:數字化,環境氣候變遷和人口老齡化。創新夥伴計畫最重要的任務,在於公部門、企業界和學術界間的交流,為社會挑戰尋求創新解決方案,同時加強瑞典的全球創新和競爭力。創新夥伴計畫具體可分為五項重點發展領域。 一、下一代交通:目標是成為運輸效率更高的社會,以智能方式運輸,使用更多的節能型車輛。 二、智慧城市:智慧城市係利用訊息和通訊技術提高政策服務的質量,提升效能和互動性,降低成本和資源消耗,改善公民與政府的聯繫。 三、循環經濟:開創世界資源的新途徑,目標是可持續和無毒的原料生產。包括糧食供應管理、能源問題、及循環生物經濟轉型。 四、生命科學:透過醫療、商業和學術界合作,研發創新藥物,使健保和醫療技術惠及社會,並運用數位技術為強化。 五、新材料:為刺激瑞典工業的廣泛數位化運用,必須在各種成熟行業、新創公司和研究環境中加強夥伴關係,提升瑞典的產業競爭力。
5G汽車協會發布《先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖》5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。 白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。 此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。