用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟於2022年6月29日提出《2022年前瞻策略報告:新地緣政治下之綠能與數位轉型雙生》(Twinning the green and digital transitions in the new geopolitical context,以下簡稱《2022年前瞻策略報告》),促進氣候與數位的協同和一致性,以面對現今與2025年的挑戰。歐盟主席Ursula Gertrud von der Leyen曾於2019年指出,綠能與數位轉型為首要的任務;鑒於俄羅斯與烏克蘭之戰爭,歐洲正加速提升於氣候與數位之全球性領導地位,聚焦於能源、糧食、國防與尖端技術之關鍵挑戰。《2022年前瞻策略報告》提出願景與雙生轉型(twin transitions)互動的整體分析,考量新興技術的角色,和地緣政治、社會、經濟與法規的因素,以塑造雙生,相互強化,並降低戰略依賴。 《2022年前瞻策略報告》確立十大關鍵行動,以擴大機會並減少源於雙生的潛在風險。該關鍵行動分別為: 1、在變化的地緣政治環境,歐盟需在轉型的關鍵領域中,持續強化其彈性與開放戰略的自主權。 2、歐盟須致力於促進全球的雙生轉型。 3、歐盟須策略性的管理關鍵商品的供應鏈,以達成雙生轉型,並保持其經濟上之競爭力。 4、在轉型的過程中,歐盟須強化社會與經濟上的凝聚。 5、教育與訓練系統須能適應新的社會經濟現實。 6、額外的投資須能轉向於支持技術與基礎設施。 7、引導轉型須有穩健與可信賴的監控框架。 8、具未來性與敏捷性的歐盟立法框架,須以單一市場為核心,將有利於具持續性的商業模型與消費模式。 9、制訂標準(Setting standards)為雙生和確定歐盟朝競爭持續性發展的關鍵。 10、更強健的網路安全與資料共享框架必須對潛在的雙生技術解鎖。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。
哥本哈根會議集思討論國際綠色技術移轉機制議題,實質突破性進展待後續再議去(2009)年12月19日在丹麥哥本哈根落幕的聯合國氣候變遷綱要公約(UNFCCC)第15次締約國會議(COP15)結論中,其中之一是各國達成將建立一套「技術機制」(Technology Mechanism),協助開發中國家獲得減少溫室氣體排放所需的綠色技術,促進綠色技術的發展及移轉,以作為實現減量及調適的支援措施,而這項機制將依據各國的環境條件及需求優先性分別進行。此外,會議並通過採納印度提出建構「氣候創新中心」網絡(Network of Climate Innovation Centers)之提議;不過整體而言,與其他氣候變遷議題一樣,建構國際綠色技術移轉機制之進展並不如預期。 國際間有關促進綠色技術移轉之討論,在UNFCCC第4條即有明文規定,不過這項議題直到2007年召開的COP13會議所宣布的「峇里島行動計畫」(Bali Action Plan)中,與減緩、調適、資金投資並列為後京都機制的四大主軸後,才獲得廣泛重視。而2008年召開的COP14會議中更進一步提出了「波茲南技術移轉策略方案」(Poznan Strategic Programme on Technology Transfer),由已開發國家透過適當的智慧財產權管理,提供開發中國家必要的綠色技術,以達成減緩的目標,當中包括技術需求及評估、技術資訊、有利環境、能力建構及技術移轉機制等具體作法。 在促進綠色技術擴散的大方向下,各國及國際組織也在今年陸續提出不同的倡議,並聚焦到智慧財產權上。諸如作為開發中國家代表的中國、印度及巴西即紛紛呼籲應仿效在緊急情況下對部分藥品專利之強制授權作法,使開發中國家得以免費使用對環境有益技術之專利;歐洲專利局、聯合國環境規劃署以及貿易暨永續發展國際中心三個組織也展開如何使專利制度能更加促進綠色技術之創新及擴散的研究工作。不過由於已開發國家擔心如此喪失龐大的商業利益,並減損創新研發的誘因,因此多採取保留態度。兩大陣營分歧的立場在哥本哈根會議中未能突破,而僅停留在過往共識的重申,也使得國際綠色技術移轉議題將留待2010年6月的波昂會議以及12月的墨西哥會議中持續再議。
行動生活之隱私爭議-現行法制能否妥善處理位置資訊衍生問題