用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=64&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應

  歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。   個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。   此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。

中國大陸公布專利法修正草案對外徵詢意見

  中國大陸國家知識產權局於2015年4月1日,公佈第四次《中華人民共和國專利法修改草案(徵求意見稿)》,其中涉及實質性修改條文共30條,包括修改現有條文18條、新增11條、刪除1條,並增加「專利的實施和運用」章。   具體修改重要內容包括:   一、強化外觀設計保護:1、產品局部外觀設計納入專利法保護範圍。2、增加外觀設計專利國內優先權制度。3、將外觀設計專利權之保護期限由10年延長到15年。4、鑒於實用新型和外觀設計專利權的授予沒有經過實質審查,具有不穩定性,草案增訂「專利權評價報告」作為侵權糾紛審理和處理過程中必須提交的「證據」,當事人無正當理由不提交,需自行承擔訴訟上不利後果。   二、提升發明人地位:1、草案規定「利用本單位物質技術條件完成的發明創造」,權利歸屬優先適用約定原則,若未約定時,申請專利權利歸屬於發明人或設計人。2、為解決國家設立之研究機構、高等院校專利技術移轉率低問題,允許發明人或設計人在單位怠於實施發明情形下,可與單位協商自行實施或者授權他人實施該專利,並按照協議享有相應權益,藉以激勵發明人積極進行技轉實施。   本次意見徵集時間已於4月28日截止,上述強化外觀設計保護及發明人地位作法,得否順利通過,有待後續持續追蹤。

歐盟要求自4月15日起,進口至歐盟的中國米類產品應檢附非基改證明

  根據歐盟GMO食品上市規則,唯有通過歐盟EFSA的安全評估並經歐盟審查通過發給上市許可的GMO,始得於歐盟境內流通上市。   過去兩年,歐盟陸續發現其自中國進口的米類產品,被未經許可的基改稻米Bt 63污染,對歐盟的食品安全產生重大疑慮,因而引起歐盟官方及消費大眾的高度關注。為此,中國主管當局雖已請求歐盟提供有關此非法GMO之基因構成(genetic constructs)的詳細資訊,並針對歐盟會員國通報至Rapid Alert System for Food and Feed(RASFF)的案件,開始進行調查並暫時禁止相關業者出口米製品,不過中國迄今未能依歐盟要求,提供其在實施出口管理時的控制樣品,以及其所使用的檢測方法與歐盟所要求者,具有相同品質之證明。   因此,歐盟已在今(2008)年2月通過一項緊急措施的決定,要求自4月15日起,進口至歐盟的中國米類產品應檢附非基改證明(GMO-free certification),且此非基改證明應由歐盟官方所設立或認可之實驗室,使用特定的GMO檢測技術檢測後,檢測結果發現未含有GMO成分時,始能核發非基改證明。   雖然歐盟並非我國農產品的主要外銷國家,但歐盟此項緊急措施仍值得我國注意,蓋我國當前GMO的進出口管理法制與先進各國尚有所落差,而我國最主要的農產品出口國—日本,其GMO管理法律中亦有授權主管機關對進口產品實施生物檢查(即是否含有GMO的檢測)的規定,倘若我國在發展GMO時,未能妥善落實GMO的管理,不無可能對非基改產品造成重大衝擊,當前歐盟要求中國出口的米類產品應檢附非基改證明,即是一例。

何謂「Sitra」?

  芬蘭創新研究發展基金(Finnish Innovation Fund, Sitra) 成立於1967年,是由芬蘭國會直接監督及管理的獨立性公共部門,為芬蘭第一個以科技為主旨的創業投資基金。Sitra設立主要目的是提供對創新企業或風險性專案提供無償資助或貸款,專門研究如何在芬蘭全方位各領域以創新帶動社會發展,使其在國際市場更具競爭力。Sitra為初創公司提供所需資金的15%到40%,待支持的項目成功後,獲取的回報即可再用於擴大投資,創造正向循環的投資環境。與芬蘭國家技術創新局(Tekes)相比,Sitra主要投資於公司和創業公司以創造有利可圖的新興業務;而Tekes為芬蘭經濟及就業部之一部分,主要資助大學、研究單位或私人公司進行科技研發,是芬蘭科技產業創新研發重要支柱。

TOP