用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=64&tp=1 (最後瀏覽日:2026/01/07)
引註此篇文章
你可能還會想看
歐盟2014個人資料保護日,倡議資料可攜權及個資規範革新

  歐盟將2014年1月28日定為「2014個人資料保護日」(Data Protection Day 2014),倡議推動個人資料修法及規範革新,主要係位因應數位化時代,個人資料權利保護越形重要,並且為了強化保護線上隱私權利,歐盟執委會首於2012年1月25日所提出個人資料保護指令的修正草案─「保護個人關於個人資料處理及此等資料自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL(General Data Protection Regulation));該修正草案於2013年6月進入歐洲議會、理事會及執委會的三方協商,同年10月21日歐洲議會公民、司法與內政委員會(Committee on Civil Liberties, Justice and Home Affairs)審議通過,若進程順利預計將於2014年獲得通過,並於2016年生效施行。   歐盟「2014個人資料保護日」會議中,特別提到此次修法,係為歐盟跨時代的個人資料保護規範革新工作,具有特別重要意義,並且倡議應對於資料可攜權(Right to Data Portability),明文法制化加以落實保障,包括加強資料當事人控制及近取個人資料的權利,資料當事人更容易近取(aceess)個人資料(第14、15條);資料當事人有資料可攜的權利(第18條),當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料(第18條(1)),且更容易自不同服務提供者間移轉個人資料。   國際間對於「資料可攜」議題,正反意見均陳,並未達成共識。歐盟執委會提出個人資料保護指令的修正草案第18條,倡議將「資料可攜性」明文法制化,並要求資料蒐集、處理與利用者對以電子化方法持有的個人資料,需使用結構性、通用的格式,以便利並確保後續個人資料可攜性。此修正草案一提出,隨即引發國際間各重要國家的熱烈探討:有反對者認為,此舉無異將形成未來國際間貿易障礙;有贊成者從確保使用者權益觀點,認為未來智慧聯網(IoT)環境下,資料可攜性是不可避免的趨勢,賦予資料當事人法律權利,有助於個人資料的保護。各重要國家對歐盟修正草案立場及意見,值得加以探究,以觀察未來法制發展趨勢。

歐盟為清潔能源轉型提出再生能源指令修正提案

  2016年11月30日,歐盟執委會正式推出了清潔能源轉型(Clean Energy Transition)包裹立法提案。這項又名為「全歐洲人的清潔能源」(Clean Energy for All Europeans)包裹立法提案有三個主要目標,分別為「能源效率優先」(putting energy efficiency first)、「讓歐盟於再生能源取得全球領導地位」,以及「提供消費者公平合理的方案」(providing a fair deal for consumers)。而整個包裹措施的內容,除了再生能源指令(2009/28/EC)的修正案的提出外,並包含能源效率指令(2012/27/EU)以及建築物能源績效指令(2010/31/EU)的修正規劃。   在再生能源指令的修正草案方面,根據執委會的說明文件 ,此次的修正大致延續2015年所提出公眾諮詢的架構,分為六個面向,分別為:(1)於電力部門創造可以促成再生能源進一步佈署之架構(2)供冷供熱部門再生能源的主流化(3)運輸部門的減碳與多元化(4)對於消費者之賦權與資訊之提供(5)強化歐盟對於生質能源的永續性門檻(6)確保歐盟層級的具拘束力目標(binding target)能及時並以符合成本效率之方式達成。   在「於電力部門創造可以促成再生能源進一步佈署之架構」方面,執委會指出,依照目前規劃,2030年時歐洲將有一半的電力來自再生能源。而因應上述規劃願景,此次的修正草案融入會員國在設計支持再生能源機制時所應遵循的一般原則,亦即除了確保相關支持機制對於投資人具透明性與安定性,系爭機制亦須符合成本效益且為市場導向。   在「供冷供熱部門再生能源的主流化」部分,執委會首先說明,供冷供熱佔歐洲能源需求的50%,但此部分再生能源的使用仍然發展遲緩。此次修正規劃的主要重點則首先在於讓會員國有機會以供冷供熱部門為選項來增加其再生能源佔比,以2030年為目標,預計每年增加1%。並在特定條件下,開放再生能源發電業者對於區域型供冷供熱系統的近用權利。   我國政府近來為推動能源轉型政策,亦致力提高再生能源配比,並由行政院核定諸如「太陽光電2年推動計畫」等配套方案,近來並將修正再生能源發展條例;歐盟所提出相關規劃內容,或亦有值得我國參酌之處。

M2M時代下的資料保護權利之進展-歐盟與日本觀察

紐西蘭隱私專員辦公室「揭露涉及隱私案件之機關名稱」政策生效

  紐西蘭隱私專員辦公室日前針對「是否及如何揭露涉及隱私案件之機關(公務機關或非公務機關)名稱」發布政策;該政策自2014年12月1日起生效。   根據紐西蘭1993年隱私法的規定,隱私專員可決定公開有助於貫徹隱私法立法意旨的資訊等;只要符合此規定,原則上隱私專員也可揭露涉及所調查隱私案件之機關名稱。據此,紐西蘭隱私專員辦公室即於日前針對是否及如何揭露上述機關名稱制定並公布政策。   須說明的是,即使機關確有違法情事,其名稱亦不必然會被揭露,如果有法律上原因或有理由認定不適揭露時,則隱私專員將不會簽署授權揭露之文件。   根據該政策,如機關違反隱私法之行為將導致難以回復之損害、其行為將導致嚴重之後果、該機關被認定為故意違反法律、揭露機關名稱有利於公益,或存在不揭露機關名稱將導致同領域、產業之其他機關受到不合理之牽連或不利益等情形時,則違反機關之名稱較可能被揭露。反之,如果僅屬單一事件、機關之行為較不至於致不利影響,或存在揭露機關名稱反不利於公益等情形時,則機關名稱則較可能不會被揭露。

TOP