用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
概念驗證中心(Proof of Concept Center, PoCC)源自美國研究型大學各校為加速大學科研成果商業化,於內部建立的專業型機構。全美第一所PoCC是2001年設立於加州大學聖地牙哥分校的「里比西中心」(the William J. von Liebig)。 為了因應美國大學科研成果商業化過程中所遇到的阻礙,例如:資金與資源缺乏導致研發人員動力不足、研發人員對於市場需求資訊不對等、技術開發提升緩慢以及政府激勵政策不足等問題。PoCC以解決大學與企業之間存在的各種差異與衝突為目標,並透過下列手段強化科技成果商業化動力,提升商業化績效:1、通過種子基金資助,為無法獲得資金支持的早期研究提供經費挹注;2、為大學科研成果商業化提供市場顧問與技術開發諮詢,以及智慧財產權保護等諮商;3、創業人才教育及培訓,促進創業文化並進行創業教育,以增強大學與產業協同創新能力。
紐西蘭IT專家組織2012年5月發布雲端運算實務準則紐西蘭最為歷史悠久的IT專家組織(Institute of IT Professionals NZ)於2012年5月發布雲端運算實務準則(Cloud Computing Code of Practice),藉此彌補實務上缺乏雲端運算標準與實務指針的問題;本準則為自願性遵循規範,以紐西蘭為市場的外國雲端業者、及紐西蘭的業者皆可適用之,並可向公眾宣示其已遵行此準則,然倘若未遵行而為遵行之宣示,則屬誤導或詐欺行為而觸犯公平交易法(Fair Trading Act 1986)。本準則有四個主要目標:1. 促進紐西蘭雲端產業的服務標準;2. 確立應揭露(disclosure)的標準;3. 促進雲端服務提供者與用戶間就資料保護、隱私與主權等事項的揭示;4.強化紐西蘭雲端運算產業的整合性。 依據此準則,雲端業者的資訊揭露範圍至少應包含業者基本資料、資訊所有權、管理及保護、與服務提供之適當管理措施等。在資訊所有權層面,業者應表明是否對所上載的資料或資訊主張所有權;而當用戶透過雲端服務利用或傳輸的資料而儲存於其他上游業者的網路或系統時,業者應確認其資料所有權之歸屬。 在資料管理與保障層面,業者應表明遵從何種資訊安全標準或實務,其已向美國雲端產業聯盟(Cloud Security Alliance)進行STAR登記,或者已通過其他標準的驗證;此外應表明儲存資料伺服器之一處或多處所在地。再者,業者亦須表明服務關係繼續中或終止後,業者或客戶對於客戶所擁有資料之存取權限。 在服務提供的適當管理措施上,包含業者的備份(Backup)程序及維護措施,皆應為揭露,使用戶得據以評估是否採取進一步的資料保護措施;此外包括服務的繼續性要求,如備援措施…等,亦應為揭露;又鑒於雲端服務有地理多樣性(Geographic Diversity)的特質,業者應使用戶知悉其提供服務、或營業活動的地點,以判斷此等服務可能適用的法權(Legal Jurisdiction)。 依據此準則,雲端業者亦可例如透過服務水準協議(Service Level Agreement)對個別用戶承諾特別的服務支援方案,以提供更好的服務品質。
芬蘭電子化政府服務採用行動數位簽章為了便利經常透過網際網路與政府打交道的民眾,芬蘭人口登記中心 (The Finnish Population Register Centre) 推出了一項創新的方式,也就是利用行動電話提供網路服務的安全憑證。而 Elisa 是首家與芬蘭人口登記中心合作並提供行動電話使用者身分認證這項服務的電話公司。 由芬蘭第二大行動電話網路公司 Elisa 所推出的第一批載有行動簽章 (mobile signature) 所需之安全憑證的行動電話 SIM 卡正式問世,此種 SIM 卡是以國際高科技集團捷德公司 (Giesecke & Devrient, G&D) 的 UniverSIM 產品為基礎所研發,卡片上載有一張類似我國自然人憑證的公民憑證 (citizen certificate) ,具有簽章功能與加密機制。此種技術屬於行動安全建置 (mobile security architecture) -也就是公開金鑰基礎建設 (PKI) -的一部份,能夠確保身分辨識所需具備的安全性與獨特性。 想要利用這項透過行動電話之數位簽章享受政府服務的民眾 可以在當地警察局登記, 預計在 2005 年底前,芬蘭的 OKO 銀行、社會保險機構、稅務機關以及勞工局等都會利用這個新的行動公民憑證 (mobile citizen certificate) 來提供服務,這將會使芬蘭人民擁有一個全國性數位服務的電子身分證。此舉也使得芬蘭在行動通訊與電子化政府領域的領先地位更形穩固。
歐盟議會通過對RoHS指令修正之提案,奈米銀與長型多壁奈米碳管將可能成為禁止之列歐盟議會之環境、公共健康暨食品安全委員會(以下簡稱委員會)於6月2日以55票贊成,1票反對,2票棄權,通過對電子電機設備有害物質限用指令(RoHS指令)修訂之提案。該提案要求對包括鹵化阻燃劑(Halogenated Flame Retardants)、聚氯乙烯(PVC)以及奈米銀(nanosilver)、長型多壁奈米碳管(long multi-walled carbon nanotubes,MWCNT)等目前未列於有害物質禁用清單之化學物質,評估是否列入清單。 RoHS指令適用於自其他第三國進口以及於歐盟地區所生產之電子電機設備產品,影響層面廣泛,值得注意的是,該修訂提案中就其適用對象改採「開放性適用」(open scope),亦即除有特別明文排除者外,所有電子電機設備產品皆適用此一指令。歐盟議會目前提議排除用於生產再生能源、特定大規模設備與工業工具以及用於生產軍事目的之物質和車輛之電子電機設備。 針對奈米銀和長型多壁奈米碳管兩項奈米物質,委員會於修訂提案將其增列於附件IV當中,將產生對內含上述二種物質且達可探測程度(detectable level)之電子電機設備禁止進入歐盟市場流通之效果。委員會也對內含奈米物質之電子電機設備要求進行標示,製造商亦應向歐盟執委會提供奈米物質之安全數據。惟有論者表示,在歐洲議會目前對於奈米物質之定義尚未明確之前提下,此修訂提案可能導致必須對所有的電子產品進行奈米標示之情況。