2023年7月歐洲創新理事會和中小企業執行機構(European Innovation Council and SMEs Executive Agency , EISMEA)撰文重申綠色商標的重要性與挑戰。隨著環境議題於國際上的重要性日益增加,綠色商標(Green trademarks)成為一個新興議題。許多敏銳的品牌於意識到多數消費者在消費選擇上更注重環保要素時,即開始開發環保相關商品或服務,並透過「綠色」相關之文字、圖像(Images)或標語(Slogans)等進行「綠色商標」布局,向消費者傳達品牌在環保、永續的投入,例如:商品為有機、對地球有益的,或可促進回收利用的等資訊。根據歐盟智慧財產權局(EUIPO)於2023年2月發布最新版之綠色歐盟商標報告(Green EU trade marks–2022 update)的統計資料顯示,綠色商標占總體商標申請的比例穩定上升中,從1996年的4%提升到2021年的12%,可以看出品牌對於綠色商標愈來愈重視。
該報告將綠色產品的商標分別九大類別。其中,能源生產和節能,合計占綠色商標申請的48%以上,污染控制占18%,交通占11%。品牌企業應確保於正確商品或服務類別進行綠色商標布局。除商品或服務註冊類別外,企業於商標註冊前之綠色品牌命名階段,應避免品牌名稱不具商標法要求的識別性,導致被智慧財產局駁回或撤銷商標註冊之風險,例如:以誤導性或純粹描述性(misleading or purely descriptive)的方式使用「生態(Eco)」或「綠色(Green)」等用語(terms)。建議綠色品牌命名應確保避免單純放入該些描述環保特性的用語,而必須考量商標法要求的識別性,能夠使相關消費者能識別綠色商品或服務來源,並得與他人的商品或服務相區別。
綜上所述,隨著近年企業推出綠色品牌、商品或服務,採用環保相關文字或標語作為綠色品牌名稱的情況逐漸增加,這也為商標申請人帶來挑戰。環保意識提升的消費者,對於這些環保相關用語的理解變得更加成熟,品牌商標更容易被認定為單純描述性的用詞(可能符合中華民國商標法第29條第一項不得註冊事由),商標申請人對於品牌商標獨特性的證明上將更加困難。因此,建議品牌擁有者應在商標註冊前之品牌命名階段,更發揮創意、注重商標法「具識別性」之註冊要件,避免品牌命名僅單純向消費者描述環保特色資訊,導致無法取得註冊商標,難以彰顯綠色品牌特色之後果。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
基改作物MON810,德法命運大不同德國今年1月底通過新修法,使國際知名生技公司孟山都主要用做於飼料的基改抗蟲玉米MON810得以在德國更加順利種植。 原來德國法律規定基改作物與其相同種類傳統非基改作物間的種植距離為150公尺,與有機作物間的距離則為300公尺;但這項距離的規定對於農田面積多數不大的德國西部來說始終是一個問題,新法為此提供了一項新的出路,亦即基改作物種植者可與其相鄰傳統作物種植者簽訂契約來排除前述種植距離的限制,此項契約雖可能使傳統作物必須標示成為基改作物,但預估仍不會減低傳統作物種植者簽訂契約的意願。 專家評論德國這項新的立法仍然為德不卒,由於新立法並未將德國公開註冊制度中基改作物需揭露詳細的種植地點改為只需揭露種植地區,使得反基改分子仍將得以順利找到基改作物並加以破壞。另外,此次亦未修正的鄰田污染賠償責任使專家擔憂基改研究仍將限於校園內。 MON810在另一端的法國則顯得命運多舛,自去年秋天起,法國引用歐盟法的防衛條款(Articles 23 of the EU Deliberate Release Directive)來暫時禁種此一抗蟲玉米,於今年1月初,法國政府為此項問題所組成的委員會向環境部長提交調查結果,委員會主席並對外表示嚴重質疑MON810的安全性,並已取得大量MON810對動、植物負面影響的科學證據,使法國政府於1月中宣佈延續去年的禁種令。但專家質疑委員會主席對於調查報告之陳述失之客觀,由於調查報告中關於MON810商業種植對於環境影響的問題仍懸而未定,事實上並未存有委員會主席所謂的「嚴重質疑」。
歐盟根據資料治理法及實施規則,透過通用標章管理資料中介服務提供者及資料利他主義組織歐洲執委會(European Commission)根據2022年6月23日生效的資料治理法(Data Governance Act, DGA)第11條及第17條,於2023年8月9日公布資料治理法及實施規則(Commission Implementing Regulation (EU) 2023/1622 of 9 August 2023),該規則明定可用於識別「受認證的歐盟資料中介服務提供者(data intermediation services providers)及資料利他主義組織(data altruism organisations)」的通用標章(Common logos)之細節,且該通用標章已申請商標註冊,以保護其免於遭受不當利用。 經歐盟認證的「資料中介服務提供者」向服務利用者提供服務時,應確保服務利用者(個人及公司)可以有效的控制自己的資料,包含共享資料的對象及時間、可在不同裝置間共享資料等。經歐盟認證的「資料利他主義組織」則應以全歐盟通用之統一格式的歐洲利他主義同意書(data altruism consent form)在各成員國之間蒐集資料,並應確保資料主體(data subject)可以隨時撤回其同意。 識別受認證的「資料中介服務提供者」及「資料利他主義組織」是實施資料治理法的一環。受認證的「資料中介服務提供者」及「資料利他主義組織」選擇使用通用標章時,不僅須將通用標章清楚標示在所有線上的出版品上,亦須將通用標章清楚標示在所有線下的出版品。經歐盟認證的「資料利他主義組織」在標示通用標章時須附上可連結到「歐盟認證的『資料利他主義組織』之公開登記資料庫(public register of data-altruism organisations)」的QR code,歐盟將於2023年9月24日開始提供該公開登記資料庫。在歐盟層面,這些通用標章的利用可以易於識別被認證的「資料中介服務提供者」及「資料利他主義組織」與其他未經認證的服務提供者,有助於提高整體資料市場的透明度。 由於數位資料具有易於竄改、複製等特性,因此需要透過「可信任工具」來證明其來源正確、內容真實等,歐盟即以「通用標章」來識別「資料中介服務提供者」及「資料利他主義組織」。我國法務部、司法院、高等檢察署、法務部調查局和內政部警政署等機關共同推動司法聯盟鏈,並於2022年推出「b-JADE證明標章」,透過認證機制確保鏈下之數位資料於上鏈前具有可信任性。通過驗證並取得「b-JADE證明標章」的機關、機構或團體等組織,對外可證明其具備資料治理暨管理能力及保護數位資料之能力,且可取得申請加入「司法聯盟鏈」之機會。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).