美國食品藥物管理局發布《人類細胞及基因製劑生產變化及可比性試驗》指引草案—建構再生醫療產品品質要求

美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)綜整近20年產官學研的建議,今年7月發布《人類細胞及基因製劑生產變化及可比性試驗》(Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products)指引草案,提供細胞及基因製劑(含組織工程產品)製造商執行可比性試驗依循的標準,做為實際運作上的參考。US FDA並強調若臨床開發與製程開發同步,將會使產品品質提升、產品供應增加或製造效率提高,讓國內外申請商申請新藥臨床試驗(Investigational New Drug, IND)及上市許可有明確的遵循方向。

之所以會需要有此指引的提出,乃是因為現今全球評估生物製劑原料藥或成品在製造品質變更前後的比較,需提供可比性試驗報告,做法上都是參考2004年國際醫藥法規協和會(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH)公布「生物製劑可比性試驗」(ICH Q5E Biotechnological/biological products subject to changes in their manufacturing process: comparability of biotechnological/biological products)指引,但主要適用對象為蛋白質藥品及其衍生物,並不完全適用細胞及基因製劑。

可比性試驗的目的是確保化學製造管制(Chemistry, Manufacturing, and Controls, CMC)變更前後的原料藥或成品,品質需具有高度相似性,才可引用之前的CMC或IND的資料;如果使用的細胞種類、病毒載體及組織工程產品等重大改變,已嚴重影響原料藥或成品的品質,不適用目前的可比性試驗,需重新申請IND或上市許可,將造成申請商需要投入更多的成本,影響產品上市時程。

細胞及基因製劑屬於新興療法,其可比性試驗的審查迄今全球並沒有明確的規範,都是參考ICH Q5E建議,而FDA發布本指引草案正向表列細胞及基因製劑,其驗證確校、安定性及批次變更的可比性依據。讓業者可依循本指引草案,加速細胞及基因製劑的開發、IND申請及產品上市,提升生醫產業的發展。

本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw

相關連結
※ 美國食品藥物管理局發布《人類細胞及基因製劑生產變化及可比性試驗》指引草案—建構再生醫療產品品質要求, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9068&no=64&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
Google與Klausner Technologies公司之專利訟訴和解

  根據路透社(Reuters)報導指出,Google,和日前亦接獲到Klausner Technologies公司之專利訴訟LG, Apple,Skype以同意授權方式,結束可視覺化語音信箱(visual voicemail)之智慧財產權訴訟案。   提出訴訟案為Klausner Technologies公司之CEO,亦為可視覺化語音信箱技術發明人Judah Klausner,其擁有美國、歐洲與亞洲之專利。目前市場上熱門的可觸控式手機具有可視覺化語音信箱特性,包含Apple’s iPhone都具有其功能性。   此案主要涉及Klausner之專利擁有可視覺化語音信箱技術,類似電子郵件,使用者可利用電腦或電話傳送可視覺化之語音訊息,並讓使用者具選擇性收取訊息。   目前Google擁有兩種服務,受Klausner’s專利之影響,其一讓使用者透過Grand Central提供一簡單網際網路語音溝通平台,另一為具Android自由軟體平台之智慧型手機。該案以和解方式結束,但Klausner婉拒與路透社說明,該公司與Google之間協議內容。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國修正通過外國情報偵察法(FISA)

  美國近期通過「外國情報偵察法」(Foreign Intelligence Surveillance Act, FISA)之修正案,其中,原先於1月份到期的第七章(Title VII)702條款(Section 702),重新延長授權6年,直至2023年12月31日。   此法案於1978年生效,為美國第一個要求政府須先獲得法院許可,始能進行電子監視的法律。法案宗旨係為平衡國家安全以及人民權利,基於憲法第四修正案對人民的保障,使身處美國領土內的人民免於被恣意監視,國家在通常情況下,須獲得外國情報偵察法院(Foreign Intelligence Surveillance Court, FISC)搜索票(warrant)才可對人民進行搜查。   本次法案修正通過後,使聯邦調查局能夠持續使用情報數據資料庫,以獲取有關美國人的信息,但法案新增要求聯邦調查局在預測性刑事調查中(predicated criminal investigation)如要索取與國家安全無關的內容,必須事先經FISC法院審查許可(court order)。   因911恐攻事件後出現的反恐需要,2008年增訂第七章702條款為FISA的正式條款,原本在今年1月到期,法案修正通過後,此條款延長授權6年。目的為美國公民提供隱私保護,禁止政府針對美國公民和位於美國境內的外國人為監視對象;僅處於國外的外國人,涉及外國情報資訊才可被列為本條進行監視的目標。允許情報部門,在三個政府部門(外國情報偵察法院,行政部門和國會)的監督下,收集關於國際恐怖分子,武器散布者以及其他位於美國境外的重要外國情報。   此項修正案保留702條款的操作靈活性,並加入了一些增強隱私措施及要求。惟,受質疑且具爭議的是,702條款條文內容規範,允許美國政府的情報機構--國家安全局(National Security Agency, NSA)基於該條款,例外不需法院搜索票,可向Google、Apple、微軟、Facebook或電信業者等美國企業蒐集、調閱國外非美國人用戶的海外通訊內容(包含電子郵件、電話、其他私人信息等),當這些被監聽的國外用戶之通訊對象係涉及美國人時亦同;意即,若美國人曾接觸被鎖定的國外對象,也會被納入調查並取得通訊紀錄等個資,且禁止業者通知受影響的用戶。曾有國會參議員試圖修改此法案,加入隱私保護條款,但最終並未獲多數同意。

歐盟「未來工廠」發展計畫

  歐盟執行委員會依展望2020 (Horizon 2020)於2016年4月14日至15日召開未來工廠公私夥伴合作 (FoF cPPP)研討會,並展示目前資助的研究與創新成果,透過本計畫將協助歐盟內製造業,特別是中小企業,將資通訊及關鍵技術與整個工廠生產鏈結合,達到整體製造業升級。   計劃具體目標如下:(1)以資通訊技術為基礎的解決方案導入製造業生產過程,增加產品獨特性、多樣化、可大規模生產,及保有高度靈活性,以迅速反應瞬息萬變的市場。(2)縮短進入市場的研發製程,提升產品質量,並透過數位化設計、成型、模擬實作及預測分析,提升工作效率。(3)改善整合生產環境的人為因素。(4)透過現代資通訊基礎的生產技術使得資源、材料、能源更有持續性。(5)促進並強化製造領域的共同平台及其生態系統。(6)從獨特的地理位置創建虛擬價值鏈,從而善用優秀人才的潛力。   我國為整合新創能量,以創造製造業下一波成長動能,今年亦陸續公布「智慧機械產業推動方案」與「數位國家‧創新經濟發展方案」,以具高效率、高品質、高彈性等特徵之智慧生產線,透過雲端及網路與消費者快速連結,打造下世代工廠與聯網製造服務體系。

TOP