美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)綜整近20年產官學研的建議,今年7月發布《人類細胞及基因製劑生產變化及可比性試驗》(Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products)指引草案,提供細胞及基因製劑(含組織工程產品)製造商執行可比性試驗依循的標準,做為實際運作上的參考。US FDA並強調若臨床開發與製程開發同步,將會使產品品質提升、產品供應增加或製造效率提高,讓國內外申請商申請新藥臨床試驗(Investigational New Drug, IND)及上市許可有明確的遵循方向。
之所以會需要有此指引的提出,乃是因為現今全球評估生物製劑原料藥或成品在製造品質變更前後的比較,需提供可比性試驗報告,做法上都是參考2004年國際醫藥法規協和會(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH)公布「生物製劑可比性試驗」(ICH Q5E Biotechnological/biological products subject to changes in their manufacturing process: comparability of biotechnological/biological products)指引,但主要適用對象為蛋白質藥品及其衍生物,並不完全適用細胞及基因製劑。
可比性試驗的目的是確保化學製造管制(Chemistry, Manufacturing, and Controls, CMC)變更前後的原料藥或成品,品質需具有高度相似性,才可引用之前的CMC或IND的資料;如果使用的細胞種類、病毒載體及組織工程產品等重大改變,已嚴重影響原料藥或成品的品質,不適用目前的可比性試驗,需重新申請IND或上市許可,將造成申請商需要投入更多的成本,影響產品上市時程。
細胞及基因製劑屬於新興療法,其可比性試驗的審查迄今全球並沒有明確的規範,都是參考ICH Q5E建議,而FDA發布本指引草案正向表列細胞及基因製劑,其驗證確校、安定性及批次變更的可比性依據。讓業者可依循本指引草案,加速細胞及基因製劑的開發、IND申請及產品上市,提升生醫產業的發展。
本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
數位金融時代已然來臨。美國金融證券市場在2015年12月發生一些重大轉變,其中之一為美國證券交易委員會(U.S. Securities and Exchange Commission,下稱SEC)允許Overstock.com公司以區塊鏈技術(Blockchain technology)為基礎透過網路發行公司證券。 區塊鏈技術為一種以分散式結構方式,記錄數據、傳輸及驗證的方法。當有資訊產生時,所有相連電腦會共同驗證該資訊之真實性。驗證該資料具真實性後會寫入區塊鏈,並產生不可竄改的紀錄。 區塊鏈技術特點如下: 一、分散式結構之設計:可達到去中心化效果,以此降低資料遭駭客攻擊或竄改之風險,提升資訊安全。 二、驗證機制:可提供所有參與者共同驗證資料真實性,打造安全可靠之共識環境。 三、P2P機制:可節省繁瑣程序並降低交易成本。 綜合上述三點,區塊鏈技術受到市場極大的關注。為提升資訊安全與降低交易成本及因應數位金融時代,金融業者嘗試將區塊鏈技術應用於股票、債券或是有價證券交易市場,期望可完善金融交易環境。 雖然區塊鏈技術潛在市場龐大,但Overstock公司也在向SEC申請允許以區塊鏈技術發行證券之文件中,指出其選擇將公司訊息儲存在任何人皆可查閱之公開區塊鏈,可能導致個人對其隱私安全的疑慮。即便有此風險,仍認為區塊鏈技術應用於發行證券,將有助完善證券市場交易環境,透過區塊鏈技術,將可紀錄所有交易,從中減少中間商控制市場的空間,並減少賣空之套利行為。 但是,將區塊鏈技術應用於數位金融或許將衍生金融法規相關問題。因為金融法規針對不同類型金融商品,有相關規範管制。若應用區塊鏈技術於相關金融商品,勢必產生相應問題。諸如:股票交易需依據證券交易條例實行,然其中並未設有電子移轉及交易相關規範,若應用區塊鏈技術進行證券交易,主管機關須思考如何規範並控管市場。因此,金融法規將勢必隨之調整以符合數位化趨勢。
紐西蘭將設置食品安全科學研究中心並提供食安相關科研補助紐西蘭科學與創新大臣Steven Joyce與食品安全大臣Nikki Kaye,於今年(2014)4月16日宣佈該國將設置食品安全科學研究中心以因應食品安全危機。該中心預計於本年底前建成並投入使用,該國政府和產業界每年將聯合資助至少紐西蘭幣500萬元。該中心是為了促進、協調和提供食品安全科學與研究,並將提供食安相關科研補助,主要聚焦於涉及公共利益的食品安全科學和研究活動,涵蓋食品的整個價值鏈。 包括: 1.生物、化學、物理和放射性的食品安全風險; 2.與食品添加物質相關的風險; 3.食品安全的風險評估、管理及與公眾的良好溝通; 4.與國際科學界和現有的國際研究平臺展開合作。 紐西蘭食品安全科學研究中心起因自去年紐西蘭發生濃縮乳清蛋白受汙染事件,嚴重影響該國畜牧業外銷,為防範類似事件再發生,去年底政府研究報告指出29項改善目標,其中即包括設立該中心。 該中心成立後首先將徵求合作對象。紐西蘭商業、創新與就業部,初級產業部兩部會於2014年4月16日聯合發布合作意向徵求通知,有意承辦或者加盟中心的研究機構可以參加競標。商業、創新與就業部之科學委員會將負責遴選合作對象,得參加5月末食品安全科學研究中心合作研討會。同時,將徵求食安相關科研補助專案。兩部會在7月初,將向前述入選者發佈提案募集通知,特別鼓勵聯合提出專案申報書,後續將由獨立專家組成的委員會對其進行評估,最後由科學委員會做出補助決定。
澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式澳洲工業、科學及資源部(Department of Industry, Science and Resources)於2025年12月2日發布「國家AI計畫」(National AI Plan),擘劃了澳洲至2030年的AI發展藍圖,將「掌握機遇」、「普及效益」與「確保人民安全」列為三大發展方向。該計畫將透過基礎建設投資、人才培育、產業支持,以及強化監管能力等途徑,打造一個更具競爭力、包容性與安全性的 AI 生態系統。 國家AI計畫的另一個重點在於,澳洲政府打算透過現有的法律監管架構治理AI,而不另立AI專法。此舉是回應澳洲生產力委員會(Productivity Commission)於8月提出之建言:政府在推動創新與訂定規範時必須取得平衡,應暫緩推動「高風險 AI 的強制護欄(mandatory guardrails)」,僅有在現行制度無法處理AI衍生之危害時,才有必要考慮制定 AI 專法。 據此,國家AI計畫指出,面對AI可能造成的危害,現有制度已有辦法進行處理。例如面對使用AI產品或服務的爭議,可依循《消費者保護法》(Australian Consumer Law)取得權利保障;AI產品或服務的風險危害,亦可透過《線上安全法》(Online Safety Act 2021)授權,制定可強制執行的產業守則(enforceable industry codes)來應對。澳洲政府未來也將推動《隱私法》(Privacy Act 1988)修法,意欲在「保護個人資訊」與「允許資訊被使用及分享」之間取得適當平衡。 同時,由於採用分散式立法的關係,澳洲特別成立「AI 安全研究院」(Australian AI Safety Institute, AISI),以強化政府因應 AI 相關風險與危害的能力。AISI將協助政府部門內部進行監測、分析並共享資訊,使部門間能採取即時且一致的治理政策。 澳洲政府曾在2024年9月研議針對高風險AI進行專門的監管,但因擔心過度立法恐扼殺AI發展轉而採用「科技中立」的監管方式,以既有法律架構為基礎推動AI治理。此與歐盟的AI治理邏輯大相逕庭,未來是否會出現現行制度無法處理之AI危害,抑或採用現行法制並進行微調的方式即可因應,值得持續觀察。
美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。