韓國中小企業暨新創事業部(Ministry of SMEs and Startups, MSS)於2023年8月30日公布「韓國新創政策」(Startup Korea),是一項提供新創企業中、長期支持的全面性政策。
韓國中小企業暨新創事業部部長李泳(LEE Young)指出,韓國新創生態圈受政府積極推動創新創業政策以及鼓勵創業的大力支持不斷蓬勃發展。而政府創新創業政策在面對近年來勢洶洶的全球數位浪潮中,必須有所變革創新,方足以因應現今數位經濟時代下之產業轉型需求,從而在競爭激烈的全球市場中勝出。
「韓國新創政策」提出三大重點策略:
(1)超越邊界(Beyond Boundaries):MSS將打造國際級的創業生態新系統,以加速韓國新創企業與國際接軌。
放寬外國專業人才工作簽證(E-7 Visa)申請標準,向擁有創新技術發展可行性的外國新創提供創業家簽證(Startup Visa)和資金,以建立更具包容性的創業生態系統。
(2)團結一致(Solidarity):MSS將推動政府民間攜手整合資金投入新創,同時還將為新創企業引介更多的財務資源。
設立「韓國新創基金」(Startup Korea Fund),由政府與民間共同投資,目標是到2027年時基金總規模可達2兆韓元,將以具先進科學和工程創新技術的深度技術(Deep Tech)新創,例如AI、半導體等為重點投資對象。此外,亦將透過更多元的投資和貸款模式,增加新創企業取得資金的管道。
(3)產業群聚、平等機會以及開放式創新(Regional Startup, Equal Opportunity + Open Innovation):MSS將推動新創產業群聚生態鏈的發展,以及加速企業集團與新創企業的鏈結。
計劃建構新創產業群聚生態鏈,以帶動長期被忽視的區域產業發展可能性。例如將在定錨企業(Anchor Company)、大學以及研究機構緊密生活商圈中建設Space-K創業中心(Provincial Space-K)。又,推動新創與企業間之合作項目擴大到AI以及生物技術等十大新興產業。
藉由「韓國新創政策」,韓國力求實現新增5家百大新創獨角獸,以及成為全球前三大「新創企業之國」之目標。
面對全球數位轉型浪潮,台灣政府應從國際動向觀察政策趨勢,韓國中小企業暨新創事業部發布之「韓國新創政策」,非常值得我國參考借鏡。
在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
員工分紅列費用之會計處理 金管會擬自民國97年起適用新修正商業會計法第 64 條規定,商業對業主分配之盈餘,不得作為費用或損失。但具負債性質之特別股,其股利應認列為費用。本條但書即是企業對於員工分紅應與以費用化之法源。配合此一新修正規定,金管會前已邀集業界及產業公會、四大會計師事務所與相關政府單位等,針對員工分紅費用化相關問題共同討論以研擬員工分紅費用化之相關會計處理及配套措施。 金管會及有關單位研討後決定, 在會計處理方面,企業應於期中報表依章程所訂之比率,預估員工分紅及董監酬勞金額入帳。期後董事會決議發放金額有重大變動時,該變動應調整當年度(原認列員工紅利之年度)之費用。至於次年度股東會決議若有變動,則依會計估計變動處理,列為次年度損益。 至於員工分紅配發股數之計算基礎以公平價值評價,上市上櫃公司應以股東會開會前一日之公平市價(考慮除權及除息之影響)計算股票紅利股數;興櫃公司及未上市上櫃之公開發行公司則應以股東會前最近期經會計師查核簽證之財務報告淨值計算股票紅利股數。企業發行員工認股權憑證及買回庫藏股轉讓予員工,應以公平價值法認列為費用。 以上決議將自 民國九十七年一月一日 起的財務報表開始適用。 由於員工分紅費用化,對一向以股票分紅作為獎勵員工的科技產業,可能造成不小的衝擊,因此,金管會也提出「員工認股權憑證制度」及「庫藏股票制度」的配套措施,並將修正「發行人募集與發行有價證券處理準則」與「上市上櫃公司買回本公司股份辦法」。金管會表示,有關本案規劃措施及實施日期,將由經濟部彙整各部會意見,提報行政院,相關措施將配合實施日程發布。
香港通過《2021 年個人資料(私隱)(修訂)條例》,「人肉搜索」成為刑事犯罪香港立法會於今(2021)年9月29日通過《2021 年個人資料(私隱)(修訂)條例》(The Personal Data (Privacy) (Amendment) Ordinance, PDPO),並於同年10月8日實施。本次修訂主要將「人肉搜索(Doxxing)」行為訂為刑事犯罪、賦予私隱專員對肉搜進行刑事調查及要求停止批露肉搜訊息之權責。 香港政制及內地事務局今5月提議修訂PDPO ,表示這是對抗肉搜的必要手段,2019年民主抗議活動中此行徑相當普遍,許多警察及反對派人士深受騷擾。修訂訊息公開後,Facebook、Twitter及Google等科技公司即透過亞洲互聯網聯盟(AsiaInternet Coalition)表示,倘香港政府修訂PDPO ,美國企業恐因網路惡意分享個資,造成香港員工面臨刑事調查或訴追風險,因而停止在香港的服務。香港行政長官林鄭月娥為紓緩各方疑慮做出回應,表示該修訂案對阻止網路惡意散布個資而言有其必要性,受香港民眾廣泛支持,其並指出社交媒體欠缺監管,包括散播仇警訊息、違反人性行為,導致香港今年7月發生刺傷警員後再自殺的事情。 依PDPO 之修訂條文,任何人未經資料當事人同意而披露他人的個人資料,並有意圖或罔顧是否會導致當事人或其家人蒙受指明傷害,例如滋擾、騷擾、纏擾、威脅或恐嚇,或對當事人或其家人造成身體、心理傷害或財產受損,最高將處5年有期徒刑及一百萬港元罰款。 對此,亞洲互聯網聯盟表示聯盟成員反對肉搜行為,惟PDPO 修訂條文措辭含糊,位於香港的企業及員工可能因用戶肉搜行為而受到刑事調查或起訴,對企業造成不成比例且不必要之回應成本,並恐限制言論自由,單純網路分享資訊的行為亦可能被視為犯罪。聯盟甚至指出:「科技企業要避免遭受這些懲罰的唯一途徑,就是不要在香港進行投資和提供服務」。