世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
2009年2月美國總統歐巴馬簽署美國振興經濟方案,釋出72億美元擴展寬頻網路連結應用,以網路開放為前提,要求聯邦通訊委員會提出國家寬頻計劃。美國聯邦通訊委員會(FCC )在2010年3月12日公布將推動一項歷時十年的遠大計畫,希望透過建立高速網際網路,重塑美國媒體與科技優先順序的概念。該計畫預定2010年3月16日送交國會。 這項計畫反映美國正視寬頻網路正逐漸成為取代電話與廣播電視業的普通媒介,工作重點在於強化網際網路存取方便性。該項計畫的重點包括補助網際網路提供者佈建偏遠地區的網路服務、拍賣頻譜以供無線寬頻設備使用,以及發展新型態的有線電視與上網功能之全面式機上盒。 此一計畫牽涉數百億美元的聯邦經費,但FCC認為,應可透過拍賣頻譜自給自足。此外,該計畫中的部分建議,尚須國會採取行動與業者支持才能落實,至於使用者恐怕要在數年後才能看到效果。 目前美國在使用寬頻與高速上網等方面落後包括亞洲國家在內的許多國家,約超過30%的美國人無法上網,原因是負擔不起或是沒有意願使用。而FCC的計畫希望能將美國打造成一個完全網路連結的環境,透過還有待矽谷研發的無線裝置讓民眾能快速上網取得健保資訊、進行網路學習,以及進行警民連線。 不過,FCC必須審慎處理既有業者上網費率與品質的問題,此外,不少電視業者以供公眾利益為由反對,並抗拒交回頻譜,以及認為這樣計畫將會導致訊號覆蓋及干擾的問題。
國防訓儲制將有重大變革,研發納入替代役行政院跨部會會議審查通過替代役條例修正草案,將研發役納入替代役,取代現行的國防訓儲制,惟研發替代役規劃內容並不等同於現行國防訓儲制,例如:國防訓儲限制預官申請,但研發替代役並未限制,此將使海外人才、海外小留學生等符合科技研發資格的碩博士,均可申請回台進入科技廠商服研發替代役。 此外,國防訓儲制在入伍短暫基礎訓練後,就如同後備軍人進入民間科高科技企業領一般工程師高薪,並享有分紅、配股,被外界抨擊為不公,未來研發替代役將改革這項缺點。將來申請服研發替代役者,在一年多的法定義務役期過後,超過的服役期限替代役男始可領取一般工程師薪水。 研發替代役役期除一年四個月法定義務役外,最長可申請延長三年,但期限要報院核定,具有彈性。至於科技大廠最關心的員額數量,仍將依內政部替代亦審議委員會審查各需用機關替代議員額需求要點第3點進行審查並視兵源調度,然員額可望逐年提升。 內政部並將進一步訂定研發替代役申請辦法,使海外人才可透過網路申請,預料研發替代役將可吸引海外學人歸國貢獻研發,對提升產業競力將有助益。替代役修正修正草案送行政院院會通過後,將送交立院審議,行政院表示會積極爭取法案在本會期過關,最快九十六年可實施。
美國聯邦貿易委員會插手企業資訊安全引起爭議美國聯邦貿易委員會(Federal Trade Commission, FTC)於2013年8月29日對位於亞特蘭大的一家小型醫療測試實驗室LabMD提出行政控訴,指控LabMD怠於以合理的保護措施保障消費者的資訊(包括醫療資訊)安全。FTC因此依據聯邦貿易委員會法(Federal Trade Commission Act, FTC Act)第5條展開調查,並要求LabMD需強化其資安防護機制(In the Matter of LabMD, Inc., a corporation, Docket No. 9357)。 根據FTC網站揭示的資訊,LabMD因為使用了點對點(Peer to Peer)資料分享軟體,讓客戶的資料暴露於資訊安全風險中;有將近10,000名客戶的醫療及其他敏感性資料因此被外洩,至少500名消費者被身份盜用。 不過,LabMD反指控FTC,認為國會並沒有授權FTC處理個人資料保護或一般企業資訊安全標準之議題,FTC的調查屬濫權,無理由擴張了聯邦貿易委員會法第5條的授權。 本案的癥結聚焦於,FTC利用了對聯邦貿易委員會法第5條「不公平或欺騙之商業行為(unfair or deceptive acts)」的文字解釋,涉嫌將其組織定位從反托拉斯法「執法者」的角色轉換到(正當商業行為)「法規與標準制訂者」的角色,逸脫了法律與判例的約束。由於FTC過去曾對許多大型科技公司(如google)提出類似的控訴,許多公司都在關注本案後續的發展。