世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:

(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。

(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。

(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。

(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。

(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。

(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9093&no=64&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
科法觀點
你可能還會想看
日亞化學與藍光LED發明人和解

  日亞化學與前員工、現任美國加州大學教授中村修二(Shuji Maka mura)達成和解,日亞化學要支付中村修二本人8億4400萬日圓的費用,以補償其在日亞化學任內發明藍光LED晶粒技術,並帶給日亞化學日後龐大收入的功勞。   中村修二去年1月因不甘其在日亞化學工作期間,開發相關藍光LED晶粒技術,為公司帶進3300億餘日圓的收益,但日亞化學卻將專利獨佔,並未支付中村修二合理的費用。中村修二遂向日本地院提出告訴,日本地方法院一審判日亞化學敗訴,需支付200億日圓作為中村修二的補償金。日亞化學不服再向高院上訴,近日傳出雙方已達成和解,以8億4400萬日圓達成和解,其中6億850萬日圓係中村修二在日亞化學工作時開發出藍光LED晶粒後,為公司帶進約3300餘億日圓中屬中村修二的貢獻所得。   相較於一審判決日亞化學要賠200億日圓來看,此次只需支付8億4000餘萬日圓,替日亞化學省下了一大筆錢,且可早日解決此紛爭,日亞化學在此次官司中不能算輸,還可確立日亞化學日後擁有藍光LED晶粒的所有技術專利,有利日亞化學未來拓展白光LED及藍光晶粒市場。一般認為,日亞化學急於與中村修二達成和解之因,主要是藍光L ED晶粒市場仍在大幅成長中,預估今年全球LED市場需求可達到50億美元,其中白光及藍光LED也佔到一半以上,未來更是以倍數成長。日亞化學如未能快速解決與中村修二的官司,恐影響日亞化學在藍光及白光LED市場上的領先地位。

外掛程式開發公司Bossland GmbH指控暴雪娛樂竊取外掛程式的原始碼

  曾開發「暴雪英霸」、「暗黑破壞神」、「魔獸世界」等多款人氣電玩遊戲的暴雪娛樂公司(Blizzard Entertainment, Inc.)素來對遊戲中的作弊外掛程式採取嚴厲的打擊手段。暴雪娛樂日前對於「暴雪英霸」遊戲中的外掛全自動機器人程式(cheating bot)採取行動,對外掛程式開發公司德商Bossland GmbH的開發者James Enright及數名匿名工程師提出著作權侵權訴訟,並指控其外掛程式讓玩家在遊戲中作弊,影響遊戲的公平性及其他玩家的娛樂,而且損及暴雪娛樂公司的獲益。James Enright最後與暴雪娛樂達成協議,交出外掛程式的原始碼。   隨後,Bossland GmbH公司控訴暴雪娛樂公司偷走他們的原始碼。Bossland GmbH的執行長Zwetan Leschew表示,James Enright所交出外掛程式原始碼的智慧財產權屬於Bossland GmbH公司,James Enright是Bossland GmbH公司的自由程式開發者,暴雪娛樂公司已經於德國參與了數個對自動機器人程式開發者的訴訟,對於James Enright與Bossland GmbH之間的關係應有所了解。從暴雪娛樂公司和James Enright的協議可以看出,暴雪娛樂公司要求James Enright將程式原始碼交出,以換取訴訟的停止。   暴雪娛樂公司發布聲明表示,暴雪娛樂已在德國贏得了多起與Bossland GmbH公司的訴訟,儘管他們利用策略手段來拖延正在進行的訴訟程序,仍堅信法院制度會繼續證實我們的主張,而且最終會阻止作弊全自動機器人程式的散布。

OASIS網路標準服務遭抵制

  開放原始碼及自由軟體的大老等發起一封抵制網路服務標準機構OASIS新專利政策的活動,並簽署了一份電子郵件,呼籲社群不要採用由OASIS標準組織所通過的規格。OASIS本月修改了它的專利政策,宣稱為開放原始碼軟體的開發提供了更好的選擇。   這份電子郵件中表示,不要採用OASIS的不開放標準。要求OASIS修改它的政策。如果你是OASIS成員,對於這種窒礙難行,不能用在開放原始碼及自由軟體上的標準,不要參與其工作小組。支持者亦表示,希望類似OASIS這樣的組織能訂出明確政策,好讓所有想採用業界標準的組織可以預先知道未來是否會被收費。   然而,OASIS為自己的政策修改提出辯護,也對這個活動加以反擊。其表示,OASIS這個政策和W3C的政策一樣,都要求必須免權利金才行。且其政策規定,業界標準可以加入專利技術,但必須對外公佈此事才行。而且幾乎在所有的案例裡,這倒頭來都會變成免專利金。   OASIS所修改的政策為標準工作提出了三種模式:RAND(reasonable and nondiscriminatory licensing,合理且統一的授權);RAND條件下的RF(免權利金);或者是有條件下的RF。   對於OASIS的杯葛,反應出產業在IP權利上的利益,以及開放原始碼和自由軟體支持者間的爭執。OASIS的新政策預計要在4月15日生效,原本是要展示對開放原始碼擁護者的妥協。但是,這份電子郵件簽署活動,顯示出新政策依然難已被接受。

行動生活之隱私爭議-現行法制能否妥善處理位置資訊衍生問題

TOP