歐盟理事會於2023年11月27日批准通過資料法法案(Data Act),該法案雖預計於2025年才會生效,該草案自2022年公告以來,各界對該法案都紛紛從不同角度表示意見,如企業對於資料共享是否對營業秘密外流的風險表達擔憂,歐盟在發揮資料經濟價值(資料交易與資料使用)的方向下,將業界考量納入進行修改,以下就經理事會通過之資料法法案關鍵影響概要如下:
1、資料共享
有鑑於因網路裝置/服務所產出的數位資料往往掌握於產品製造商或服務提供商身上,資料法建立了資料共享的基本規則,確保數位資料由製造商/服務商流動至第三人(包含產品/服務使用者),另資料法所保護之資料包含使用AI所產生之資料。
2、營業秘密保護
為避免資料持有人的營業秘密因此外流,資料持有人可以與請求提供資料的第三人(資料請求者)協議應採取之保密措施,在保密措施未達成一致或使用者未實施保密措施,資料持有人可暫停資料共享,在有重大經濟損失之虞時甚可拒絕資料共享。
3、對資料持有者的限制
資料持有者僅能在與使用者約定之範圍內使用資料,在無使用者許可下,不得用使用者所產出之資料去回推使用者的經濟、資產或生產等資訊,以避免損及使用者的商業地位。
資料法法案的主要目標在於塑造具競爭性的資料市場生態,確保資料的價值可公平分配到不同參與者身上,其聚焦在非個人資料的數位資料上,除適用於對歐盟提供產品/服務之廠商外,亦包含可於歐盟境內取得資料之情況。國內廠商宜先檢視自身商業行為與歐盟之關聯性,盤點現有產品或服務所產出的資料屬性,如可能需特別約定保密措施之營業秘密,預先規劃資料管理機制與對應管制措施,就重要資料或營業秘密管理機制可參資策會科法所公布之《重要數位資料治理暨管理制度規範(EDGS)》、《營業秘密保護管理規範》。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國聯邦經濟暨能源部(Bundesministerium für Wirtshaft und Energie)、德國聯邦工業聯盟(Bundesverband der Deutschen Industrie)、德國工業與商務部(Deutsche Industrie- und Handelskammertag)及德國工藝中心(Zentralverband des Deutschen Handwerks)針對共同之目標擬定中型企業發展政策。該規劃於2015年7月23日柏林提出。該規劃重點為以下五個方針: 1. 企業精神培育(Gründergeist): 自1995至2014年德國新創企業的成長銳減30%。為要克服此問題,應讓德國學童在學校時就有「創業家」此一職涯選項。年輕的新創企業需要持續提升與企業合作與互動,並給予創新之顧問補助,像是新創顧問諮詢上的服務(該計畫名稱為Gründer Coaching Deutschland)。針對目前已經成立之中小型企業,相關補助及服務將自2016年會提出。 2. 數位化進程(Digitalisierung): 為提升中型企業的科學技術轉移,透過該計畫預計將在今年全德國新設立至5座技轉中心(Technologietransfer)。透過該中心,各個企業及工藝業者可得取有關產業面現狀發展、新興科技及商業模式的最新訊息,為讓其裝備成具數位化能力的業者。 3. 融資(Finanzierung): 透過歐盟投資及歐洲復甦基金(ERP/EIF)新興政策之發佈,將注入50億歐元用於輔助快速成長、資本集中之企業,以3至4百萬歐元的幅度做補助。此透過與歐盟投資銀行共同聚集的資金,將於2015年提供給企業申請。此次融資政策係歐盟投資及歐洲復甦基金從10億提升至17億歐元。 4. 勞工支配(Fachkräfte): 德國勞工的質量與優勢將透過「聯盟教育培訓計畫2015-2018(Allianz für Aus- und Weiterbildung 2015-2016)」做提升。每位年輕學子在就學期間,就應透過學校的輔助認清其就業路線,以助未來專業領域培訓及發展。「輔助中小型企業得取切合相關職業培訓及外來勞動力引入」補助計畫導入,目的亦係為讓德國勞動力更具優勢及競爭力。 5. 行政成本降低(Bürokratieabbau): 透過減免官僚程序法(Bürokratieentlastungsgesetz)的導入,將針對未來企業會計、紀錄、統計數據公開及回報的要求進行修改。此一法的導入將可讓德國中型企業7.44億歐元行政成本的減免。為了讓新創企業能夠更容易的開始營運,政府部門亦將更進一步的與業者接觸互動並連結,輔助新創企業中遇到創業程序上的服務及指導。透過相關行政程序的電子化管理,將可讓德國及至歐盟透過該新的管理標準省去過多的行政成本,並優化創業流程。
歐盟日前開始適用非個資之資料流通規則歐盟於2018年11月間通過Regulation (EU) 2018/1807,即促進非屬個人資料(下簡稱個資)之資料流通規則(下簡稱規則),藉以促進歐洲單一數位市場之規模經濟,並於2019年05月28日開始適用,據此,歐盟執委會亦因應該規則而頒布指引(COM(2019) 250 final),以釐清規則與GDPR之互動關係。 該規則開宗明義表示其制定係為了促進非屬個資之資料(下稱資料)流通,即其適用範圍包含(1)提供予歐盟境內之用戶使用,或(2)在歐盟境內之人依其需要所衍生者等資料,但排除GDPR第4條所定義之個資,故不排除GDPR之適用可能,申言之,若資料集中同時含有資料與個資,則流通則應分別適用本規則及指引(資料部份)與GDPR(個資部份)。 此外,為有效達成資料流通,各個歐盟成員國原則上禁止作出資料在地化要求(Data Localisation Requirements),例外僅於公共安全之前提下,且有充分的理由,方得做出合比例性之要求,並於單一資訊網站上即時更新資料在地化要求之清單,不過至遲在2021年05月30日前,成員國須確認其境內之相關規範已無前開例外之資料在地化要求。 又,為使歐盟各成員國就資料流通之無礙溝通,各成員國應設單一聯繫窗口,而在(1)歐盟相關規定或(2)國與國間不具特定合作機制,致成員國無法取得資料之近用權限時,該成員國之單一聯繫窗口得向資料所屬成員國之單一聯繫窗口發出協助請求,並附上請求之原因說明與近用資料之法律依據。 綜上,本規則及其指引與GDPR及其相關規定,對於資料與個資等流通分別建構出穩固的法律系統與環境。
美國國會提出法案,使儲能設備享有投資稅額抵減美國國會於2021年3月9日提出「2021年儲能稅制獎勵及設置法草案」(Energy Storage Tax Incentive and Deployment Act of 2021, H.R.1684),擬擴大投資稅額抵減制度(Investment Tax Credit)之適用範圍。有鑑於現行投資稅額抵減制度並不包含儲能設備,然儲能設備對於再生能源發展又具有重要地位,故為獎勵儲能設備之設置,同時輔助再生能源發展,美國國會遂提出前揭草案,並修正美國1986年國內稅收法(Internal Revenue Code of 1986, 26 U.S. Code)§48(a)(3)(A)(vii)以及§25D(a)規定,擬將投資稅額抵減制度擴張及於儲能設備,亦即,未來如草案通過後,不論是發電業者或用電戶只要有合乎規範設置儲能設備,即可適用投資稅額抵減制度,並依照其投資於儲能設備之額度抵減所得稅。 依照美國1986年國內稅收法,現行美國投資稅額抵減制度主要是依照發電業者或用電戶「開始設置再生能源發電設備之時點」以及「設置成本」給予不同程度之所得稅抵減,如發電業者或用電戶越早開始設置再生能源發電設備,發電業者或用電戶可申請抵減所得稅之額度則越高,最高可達該再生能源發電設備成本之30%;反之,如開始設置的時間越晚,則可申請抵減所得稅之額度則越低。舉例言之,如申請人於2020年1月1日以前開始設置再生能源發電設備,而於2024年1月1日前將再生能源發電設備投入營運,此時可申請抵減所得稅之額度可達該再生能源發電設備成本之30%,反之,如為2021年間開始設置,而於2024年1月1日前將再生能源發電設備投入營運,此時可申請抵減所得稅之額度僅有該再生能源發電設備成本之22%。 依美國國家稅務局(Internal Revenue Service, IRS)「針對投資稅額抵減制度施工起點標準」行政函釋(Beginning of Construction for the Investment Tax Credit),有兩種判定再生能源發電設備有開始設置之標準,其一為「物理工作物標準」(Physical Work Test),其二為「5%成本支出標準」(Five Percent Safe Harbor),申請人只要符合任一標準,即可被認定有開始再生能源發電設備設置之行為。於「物理工作物標準」下,只要該再生能源發電設備之重要基礎零件已開始組裝,即可被認定為已經有再生能源發電設備設置的行為;於「5%成本支出標準」下,只要申請人已經支出該再生能源發電設備成本之5%,即可被認定有開始再生能源發電設備設置之行為。但不論以上開何種標準,申請人都必須有不中斷且持續進行設置之事實,始可被認定為其開始設置再生能源發電設備的時間點較早,而申請抵減較多之所得稅,否則即有可能被認定開始設置的時間點較晚,而僅得申請抵減較少之所得稅。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。