加州針對18歲以下兒童通過兒童隱私保護法

加州州長Gavin Newsom 早先簽署了《加利福尼亞州適齡設計法》(California Age-Appropriate Design Code Act AB 2273,以下簡稱該法),2023年4月28日,倡議團體與聯邦政府官員提交一份意見陳述以支持該法,預計於2024年7月1日生效;針對提供線上服務、產品給18歲以下加州兒童的企業進行管制。

該法的適用範圍:

1. 倘若企業提供的線上服務、產品或功能符合以下條件,則受該法所規範:
(1) 提供服務的對象為兒童(年齡於13歲以下的孩童)之網路服務商。
(2) 所提供之服務包括兒童經常瀏覽的網站,或者確定是廣泛被兒童使用的線上服務、產品或功能。

2. CPRA(California Privacy Rights Act)所規範之「企業」,是位於加州並蒐集加州居民個人資料的營利性組織,其須滿足以下條件之一:
(1) 年度總收入超過 25,000,00美元,或是每年單獨或聯合購買、出售或共享100,000名以上加州居民或家庭的個人資料,或者年收入的50%以上來自出售或共享加州居民的個人資料。
(2) 該法不適用於網路寬頻服務、電信服務或實體買賣行為。

一. 規範內容
1. 資料保護影響評估:企業針對所營事業須完成資料保護評估,且必須每兩年自主進行資料安全確認。
2. 最高級別隱私權設置:企業對於兒童使用者,須預設最高等級之隱私權設置及保護。
3. 隱私政策和條款:企業必須簡明的提供隱私政策、服務條款和明確標準,並使用與兒童年齡相符的清晰語言,以便兒童理解語意。
 (1) 將兒童依據年紀分為:0至5歲為「早期識字階段」、6至9歲為「核心小學階段」、10至12歲為「過渡階段」、13歲以上為「早期成年階段」。
 (2) 定位服務:要求企業在兒童的活動或位置受到父母、監護人或其他消費者的監控或追蹤時,向兒童明確提醒。

該法針對兒童制定嚴謹的法規予以保護,確保兒童個人資料不會在沒有認知的情況下,因使用服務而被蒐集、處理及利用。該法特殊的地方為,對於未成年人進一步區分不同年齡段,若有明確區分出並針對各年齡段進行不同的告知事項設計,將更易使閱讀之未成年人明確了解個資告知內容,應值贊同。

相關連結
你可能會想參加
※ 加州針對18歲以下兒童通過兒童隱私保護法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9099&no=64&tp=1 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

Nokia 出售125項專利價值120億美元

  美國NPE公司Pendrell Corporation日前宣布從Nokia收購了125項專利。根據Pendrell Corporation之發言可知,前揭125項專利當中,共有81項專利為關鍵專利(essential patent)。主要涉及領域包括運用於智慧型手持裝置、桌上型電腦、MP3播放器等電子設備的多種基礎記憶體技術,其中尚包括以SD卡為主之嵌入式快閃記憶體技術。   市場分析師預估上開技術的全球市場在今年(2013)將有超過120億美元的價值,若僅論及SD卡市場,其價值甚至在2018年將超過210億美元。   依據雙方契約內容可知,為延續Nokia位於芬蘭之研發投入,Pendrell Corporation亦已成立一名為赫爾辛基記憶體技術(Helsinki Memory Technologies,HMT)之子公司。Nokia有權使用HMT未來所收購及所開發之所有專利。又,前揭專利之授權金收入均將運用於進一步之研發活動。   Pendrell Corporation之智財長Joseph Siino則指出,將購自Nokia之125項專利與該公司原有之其他智財組合結合後,除可提供持續性創新之用以外,亦可以公平合理的價格出售給全世界對其感興趣的公司。   赫爾辛基當地律師事務所之合夥律師Jan Lindberg表示大公司將更積極於出售已非其核心資產之專利資產。但應注意對專利之鑑價時有變化。以本件為例,便應考量Nokia之在赫爾辛基交易所之市值僅餘123億美元。

何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?

  中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。   ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型: 1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。 2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。 3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP