加州針對18歲以下兒童通過兒童隱私保護法

加州州長Gavin Newsom 早先簽署了《加利福尼亞州適齡設計法》(California Age-Appropriate Design Code Act AB 2273,以下簡稱該法),2023年4月28日,倡議團體與聯邦政府官員提交一份意見陳述以支持該法,預計於2024年7月1日生效;針對提供線上服務、產品給18歲以下加州兒童的企業進行管制。

該法的適用範圍:

1. 倘若企業提供的線上服務、產品或功能符合以下條件,則受該法所規範:
(1) 提供服務的對象為兒童(年齡於13歲以下的孩童)之網路服務商。
(2) 所提供之服務包括兒童經常瀏覽的網站,或者確定是廣泛被兒童使用的線上服務、產品或功能。

2. CPRA(California Privacy Rights Act)所規範之「企業」,是位於加州並蒐集加州居民個人資料的營利性組織,其須滿足以下條件之一:
(1) 年度總收入超過 25,000,00美元,或是每年單獨或聯合購買、出售或共享100,000名以上加州居民或家庭的個人資料,或者年收入的50%以上來自出售或共享加州居民的個人資料。
(2) 該法不適用於網路寬頻服務、電信服務或實體買賣行為。

一. 規範內容
1. 資料保護影響評估:企業針對所營事業須完成資料保護評估,且必須每兩年自主進行資料安全確認。
2. 最高級別隱私權設置:企業對於兒童使用者,須預設最高等級之隱私權設置及保護。
3. 隱私政策和條款:企業必須簡明的提供隱私政策、服務條款和明確標準,並使用與兒童年齡相符的清晰語言,以便兒童理解語意。
 (1) 將兒童依據年紀分為:0至5歲為「早期識字階段」、6至9歲為「核心小學階段」、10至12歲為「過渡階段」、13歲以上為「早期成年階段」。
 (2) 定位服務:要求企業在兒童的活動或位置受到父母、監護人或其他消費者的監控或追蹤時,向兒童明確提醒。

該法針對兒童制定嚴謹的法規予以保護,確保兒童個人資料不會在沒有認知的情況下,因使用服務而被蒐集、處理及利用。該法特殊的地方為,對於未成年人進一步區分不同年齡段,若有明確區分出並針對各年齡段進行不同的告知事項設計,將更易使閱讀之未成年人明確了解個資告知內容,應值贊同。

相關連結
你可能會想參加
※ 加州針對18歲以下兒童通過兒童隱私保護法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9099&no=64&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
日本公布《行動通信領域的基礎設施共享,於電信事業法及電波法的適用關係指引》

  隨著具有高速大容量特性的第五代行動通訊(5G)技術啟用,如何促使發射射頻(Radio frequency, RF)的基地臺能夠達到小型化及多點化的目標,將是未來重要的課題。但在地理空間限制、景觀影響與法規限制等因素下,除了增設基地臺外,也可考慮「基礎設施共享」(Infrastructure Sharing)的概念。   日本總務省於2018年12月28日公布《行動通訊領域的基礎設施共享-電信事業法及電波法的適用關係指引》(移動通信分野におけるインフラシェアリングに係る電気通信事業法及び電波法の適用関係に関するガイドライン)。   本指引主要從「利用基礎設施共享,推動行動通訊網絡整備」的觀點出發,首先定義「基礎設施共享事業」之範圍與型態,其將基礎設施分為兩類,一類為土地和建物、鐵塔等工作物、另一類為電信設備(如天線、增幅器、調變器)。接著說明基礎設施分享業者在使用上述兩類基礎設施時,於電信事業法及電波法之適用。具體內容包含欲經營該事業之必要程序、業者向行動通訊業者提供基礎設施時簽訂的契約類型、提供基礎設施的條件,最後說明若行動通訊業者、電信業者等各業者間,無法就欲共享的基礎設施使用權達成共識時,相關的爭議處理流程。本指引最後亦說明各業者在使用土地和建物、鐵塔等工作物,以及電信設備時的共通措施。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

美國政府強化推動「更佳建築倡議」計畫

  美國總統歐巴馬於2011年2月3日,根據美國振興方案(Recovery Act)預算案,宣布推動「更佳建築倡議」(Better Buildings Initiative)計畫,這個倡議計畫承諾透過一系列的獎勵,促進私人企業在建築節能改善上進行投資,並以到2020年要讓商業建築的能源效率提高20%做為目標。   在今年的6月19日,美國能源部與商業部共同宣布選定三個「卓越建築營運中心」(Centers for Building Operations Excellence),由美國能源部和商務部國家標準與技術研究院的製造業擴展夥伴關係(National Institute of Standards and Technologies’ Manufacturing Extension Partnership,NIST MEP)聯合資助130萬美元成立此三個中心,乃為推動「更佳建築倡議」計畫的相關行動之一,希望藉由三個中心的運作,來達成提高能源效率20%,並且期望一年可以減少約400億美元的能源支出。   「卓越建築營運中心」將會與各大學、地方社區、技術學院、貿易協會,以及能源部的國家實驗室合作,建立培訓計劃,提供商業建築專業人士所需要的關鍵技能,以提升建築效率,同時降低了能源的浪費和節省資金。   此三個中心分別位於加州、賓州以及紐約州,提供機會讓當前和未來有可能參與潔淨能源經濟的人,學習寶貴的技能,並且著重在於開發課程以及試點培訓方案,以培育優良的建築的經營者、管理者與能源服務供應商,進行商業、工業與教育建築物上的調整與能源管理。

TOP