歐盟資料保護委員會(European Data Protection Board, EDPB)於2023年12月13日回覆歐盟執行委員會(European Commission, EC)有關Cookie協議原則草案(Cookie Draft Pledge Principles)之諮詢。該草案旨在處理「Cookie疲勞」(Cookie fatigue)所造成的隱私權保護不周全之處。
在電子通訊隱私指令(ePrivacy Directive)以及GDPR規範下,由於現行同意機制複雜,造成用戶對Cookie感到疲勞,進而放棄主張隱私偏好。
為了避免「Cookie疲勞」,EDPB提出以下原則和建議,大致可以分為三點:
一、簡化Cookie不必要的資訊
1.基本運作所需之Cookie(essential cookies)無需用戶同意,故不必呈現於同意選項,以減少用戶需閱讀和理解的資訊。
2.關於接受或拒絕Cookie追蹤的後果,應以簡潔、清楚、易於選擇的方式呈現。
3.一旦用戶拒絕Cookie追蹤,一年內不得再次要求同意。
二、確保資訊透明
1.若網站或應用程式的內容涉及廣告時,應在用戶首次訪問時進行說明。
2.不僅是同意追蹤的Cookie,用於選擇廣告模式的Cookie,仍需單獨同意。
三、維持有效同意
1.應同時顯示「接受」和「拒絕」按鈕,提供用戶拒絕Cookie追蹤的選項。
2.在提供Cookie追蹤選項時,除了接受全部的廣告追蹤或付費服務外,應提供用戶另一種較不侵犯隱私的廣告形式。
3.鼓勵應用程式提前記錄用戶的Cookie偏好,但強調在用戶表達同意時必須謹慎處理,預先勾選的「同意」不構成有效同意。
EC表示,該草案目的在於簡化用戶對Cookie和個人化廣告選擇的管理,雖然為了避免Cookie疲勞而簡化資訊,仍應確保用戶對於同意Cookie追蹤,是自願、具體、知情且明確的同意。將於後續參考EDPB之建議,並與利害關係人進行討論後,制定相關法規。
由於電子商務的應用往往涉及一些技術層面概念,當法律的適用遇到這些應用與解釋時,不免提高法院在裁判上的困難度。 以美國馬里蘭州上訴法院在五月初進行的 Beyond Systems Inc. v. Realtime Gaming LLC. 案件言詞辯論為例,由於該案涉及網路與法院管轄權之爭議,審理該案的數位法官均坦承對於律師在言詞辯論過程中所提到的一些技術名詞解釋感到理解上有些困難。該案是由位在馬里蘭州的原告指控位於喬治亞州發展互動軟體的公司,聲稱在 2003 年底自被告收到 240 封垃圾電子郵件,違反該州的反垃圾郵件法。馬里蘭州的地方法院駁回原告的訴訟,乃因現有證據很難判斷被告與馬里蘭州之間有地源上的關聯性,故該法院對於被告沒有管轄權。在上訴法院的言詞辯論中,原告指稱,從新墨西哥州所寄發的電子郵件內附有被告的網站連結;而被告則表示其並未寄發大量垃圾郵件給原告,此外,光是網站的存在以及在網際網路上提供資訊並不能做為法院主張管轄權的依據。 儘管雙方律師在法庭上互執己見就該案從不同角度進行辯論,但兩邊律師皆表示,要在現階段於法庭上對電子商務及電子通訊提出定義及解釋都不是容易的事,尤其在網際網路這塊領域中,要認清誰是行為主體是難度很高的事。
何謂「標準必要專利」?標準必要專利(standards-essential patents,SEPs)是國際標準組織所採行的一種專利運用模式,主要係為了使標準共通技術普及之同時平衡專利權人之利益,將技術發展中重要的標準共通技術結合專利保護,同時均要求專利權人須簽署FRAND(Fair,Reasonable and Non-discriminatory)條款,以公平、合理、無歧視之原則收取合理數額之專利授權費供標準化組織成員有償使用。然而,因專利本身即是一種合法壟斷,是以標準必要專利之授權模式可實現利益最大化;但涉及到具高度共通性又難以迴避的技術時,應當避免少數專利權人濫用專利權和市場壟斷。因此,專利權人和被授權人之間,對於收取合理專利授權費之議題,在一直無法取得共識之下,往往訴諸法律解決。從美國聯邦法院涉及標準必要專利侵權之訴訟案例,可看出美國針對標準必要專利目前主要有下列幾種趨勢:(1)合理之專利授權費以該技術佔產品元件之比率計算;(2)標準必要專利之授權費金額逐步降低;(3)專利權人必須先進行授權流程(4)不能直接申請禁制令。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
歐盟食品管理局擬建立風險評估外部專家資料庫近年來,由於(European Food Safety Authority, 簡稱EFSA)對GM產品之管理並未能進行足夠之科學分析,同時,亦過份仰賴業者所提供之數據資料等原因,而造成歐盟某些會員國家對EFSA所作出之評估報告於公正及客觀性方面產生質疑;甚至,歐洲食品業者亦對目前EFSA是否將會因為專家人力不足而導致整體風險評估能力下降之問題表示關切。一位EFSA官員指出:我們需要更多科學專家來協助處理與風險評估有關之事務。 其次,隨著各界因對GMO產品不當之批判與歐洲整體食品安全評估工作量增加等因素,EFSA於日前決定,欲透過建立一外部專家資料庫(External Expert Database),來協助其風險評估工作之執行並促進評估專家招募過程之透明化,以達成免除外界對於歐洲食品安全評估過程疑慮之目的。不過,這些將提供協助之專家,並不會因此而真正成為EFSA科學評估小組成員(其將被視為是由人民主動對該小組執行評估工作提供協助)。除EFSA擬徵求歐盟境內專家學者外,未來其亦將邀請歐盟以外其他國家並在該領域為重要研究先驅之專家提供協助,以增加風險評估之品質與客觀性。 再者,綠色和平組織歐洲發言人Mark對於EFSA現階段執行之工作狀況也表示意見並指出:目前EFSA是在一種配備不良(ill-equipped)之狀態下,來勉強執行其所執掌之事務;不過,更讓人感到憂心者,則是由EFSA科學評估小組所做出科學性之意見,於不同會員國家間或於歐盟以外其他國家其是否仍將會被完全採納之問題。有鑒於此,相關人士認為:應再次強化EFSA於風險評估方面之能力! 最後,一位非政府機組織專家也提醒:僅單純地透過專家庫之建立,其實,並不能圓滿地解決當前EFSA於決策機制中所遭遇之困難;而只有當EFSA在未來欲邀請外部專家提供協助與支援時,一併將資金及相關政策配套措施納入考量後,才是此問題真正解決之道。