2024年1月29日,加州立法機關提出2020年加州消費者隱私法(California Consumer Privacy Act of 2020)之修正案,限制企業出售、分享、使用及揭露18歲以下消費者的個人資料。
2020年加州消費者隱私法旨在保護消費者之個人資料相關權利。依現行條文,企業向第三方出售、分享消費者個資前,應向消費者發出通知。而消費者有權拒絕出售、分享其個資,即便消費者曾經同意,亦有權隨時要求企業停止出售、分享行為。現行條文尚禁止企業在明知消費者未滿16歲的情況下,出售或分享消費者個資。除非年滿13歲消費者本人授權,或未滿13歲消費者父母授權,企業方可為之。
然該法修正案調整了前述條文,改為禁止企業在明知消費者未滿18歲的情況下,出售或分享消費者個資,除非企業取得年滿13歲消費者本人之授權,或取得13歲以下消費者父母之授權。
加州消費者隱私法修正案亦針對未成年人個資的使用與揭露增設限制。依現行條文,消費者有權限制企業只能在提供商品、服務的必要範圍內使用其敏感個資。若企業欲對敏感個資為原定目的外之使用或揭露、或敏感個資可能被用於或揭露予第三方,企業應向消費者發出通知。而消費者有權限制或拒絕企業之使用、揭露行為。而後該法修正案在同條增加未成年人個資使用、揭露相關規範,規範企業不得使用、揭露18歲以下消費者個資。除非年滿13歲消費者本人同意,或是未滿13歲消費者父母同意企業為之。
若修正案通過,再配合現行條文於行政執行(Administrative Enforcement)章節之處罰規定,將能有效擴大該法對未成年人的保護。該修正案亦以條文要求加州隱私保護局(California Privacy Protection Agency)在2025年7月1日前,廣泛徵求公眾意見並調整相應法規,以進一步實現該法目的。
紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。 《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括: 1.對決策過程進行描述,比較分析其利益、需求與預期用途; 2.識別並描述與利害關係人之協商及其建議; 3.對隱私風險和加強措施,進行持續性測試與評估; 4.記錄方法、指標、合適資料集以及成功執行之條件; 5.對執行測試和部署條件,進行持續性測試與評估(含不同群體); 6.對代理商提供風險和實踐方式之支援與培訓; 7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款; 8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄; 9.自透明度的角度評估消費者之權利; 10.以結構化方式識別可能的不利影響,並評估緩解策略; 11.描述開發、測試和部署過程之紀錄; 12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源; 13.無法遵守上述任一項要求者,應附理由說明之; 14.執行並記錄其他FTC 認為合適的研究和評估。 當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。
美國 FCC 公布「衛星補充涵蓋」監理架構,持續向「未來單一網路」的政策願景邁進美國聯邦通訊委員會(Federal Communications Commission, FCC)於2024年3月14日通過「衛星補充涵蓋(Supplemental Coverage from Space, SCS)」的監理架構,未來將增修聯邦法規電信專章(Title 47 of Code of Federal Regulation)開放600 MHz、700MHz、800 MHz、1800MHz中部分頻段及AWS H-block(1915-1920 /1995-2000 MHz),容許衛星通訊業者向地面行動通訊業者租用頻譜提供SCS服務。 SCS能讓用戶透過手機等既有的行動通訊終端接收衛星訊號,如Starlink目前正與T-mobile合作試驗,透過其第二代低軌衛星提供的手機直連(Direct to Cell)服務,能大幅延伸地面行動通訊系統的涵蓋區域。但為了最大程度防止有害干擾,FCC劃出6個獨立地理區域(Geographically Independent Area, GIA),地面行動通訊業者若要將頻譜出租予衛星通訊業者,除出租頻率需屬於SCS頻段外,還必須在一個GIA內擁有所有與出租頻率同頻的所有執照(all co-channel licenses),而衛星通訊業者僅能基於頻率租用協議,在該GIA內以次級使用的方式提供SCS服務。 雖然2023年底於杜拜落幕的世界無線通訊大會(WRC-23)才剛決議(Resolution com6/9 WRC-23)把「研究指配新頻率供衛星直接與地面行動通訊終端連接,以補充地面行動通訊的涵蓋範圍」納入WRC-27的議程項目 (Agenda Item 1.13 WRC-27),FCC就搶先開放SCS頻段,但表示會積極參與國際研究與活動,確保在國際電信聯盟(International Telecommunication Union, ITU)的無線電規則(Radio Regulation)下建立的SCS相關國際監理機制能取得重大進展,並隨著SCS市場的發展逐步開放能夠運用的頻段與應用場景,期能充分發揮衛星通訊與地面行動通訊整合的效益,互補不易涵蓋的區域並無縫銜接,達成「未來單一網路」(Single Network Future)的政策願景。
巴西基因改造科技管理法制簡介