美國伊利諾州伊利諾最高法院(Illinois Supreme Court)於2023年11月30日對Mosby v. The Ingalls Memorial Hospital et al.案做出判決:認定符合聯邦法規健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)規定,基於「治療、付款或健康照護運作」之前提下,除病患外即使是醫療服務提供者的生物識別資訊被蒐集、利用或揭露,同樣不受伊利諾州生物資訊隱私法(Biometric Information Privacy Act, BIPA)的保護。
伊利諾州現行以BIPA對蒐集或保留任何個人的生物識別資訊(如虹膜、聲紋、指紋或生物樣本等)做了較為嚴格的限制,原則上這些資訊不能在未經當事人同意的情況下被蒐集、利用或揭露。除非是1.由醫療保健機構從患者身上蒐集的生物識別資訊;或2.根據HIPAA規定,基於進行治療、付款或健康照護運作的前提來蒐集、使用或儲存的生物識別資訊,才可例外免經當事人同意(biometric identifiers do not include information captured from a patient in a health care setting or information collected, used, or stored for health care treatment, payment, or operations under the federal HIPAA.)。然而,基於進行治療、付款或健康照護運作的前提,資料主體除接受治療或健康照護的病患外,是否涵蓋醫療服務提供者(如醫護人員),則有疑義。
本案因醫院的護理人員認為醫療院所未經同意,使用帶有指紋掃描功能的藥品櫃,來蒐集、使用或儲存了他們的生物識別資訊,因此提起訴訟。伊利諾州的地方法院和巡迴上訴法院於本案均支持原告提出的主張。然而,伊利諾州最高法院審理時則透過文義解釋以及條文結構分析之方式,認為立法者係有意於例外規定中重複使用「資訊」一詞,兩次「資訊」之內涵應有不同。故前段的資訊係指患者的資訊,而後段的資訊來源則應包含了醫療照護提供者,方符合立法者真意。
生物識別資訊風險較高,過去被認為需要取得當事人積極同意授權;於本案中伊利諾州最高法院權衡認為基於「治療、付款或健康照護運作」情境下,如本案情形係用來確保醫藥品被正確分配給需要的患者,因此對患者以外的醫療人員隱私權做出限制符合例外規定。本案揭示了個資隱私得為合理利用的情境之一,然而HIPAA對於資料傳輸較寬鬆的規範會否又與資料保護的趨勢有所違背,仍須持續關注相關案例發展。
美國著作權局於2022年1月20日提出2022–2026五年策略計畫,以培養創造力及豐富文化為主軸,並闡明四個總體目標:著作權服務普及、提升效率、公正專業及增進資料使用。相關內容值得持續關注後續發展,說明如下: 一、著作權服務普及 隨著數位網路技術興起,著作權局已展開如製作溝通素材、回答公眾問題、提供各式主題教育計畫等活動。後續將更專注於讓所有人盡可能了解其服務,如著作權賠償委員會(Copyright Claims Board, CCB)等,創造一個屬於大眾的著作權系統,並豐富公眾可使用創意內容的數量與多樣性。 二、提升效率 著作權局進行包括建立企業著作權系統(Enterprise Copyright System, ECS)使其服務數位化、透過改進公共資訊聯絡中心、倉庫管理和財務系統以提升效率等工程。除持續更新ECS等系統外,未來將以用戶為中心來滿足著作權界的需求。 三、公正專業 著作權局長期以來擔任國會的著作權法律顧問,處理相關立法、政策與實踐問題,並與其他行政機關、法院合作處理各式著作權疑義。除了持續透過立法推動、規則制定及研究來衡平著作權法及政策之外,著作權局將繼續在國際舞台上參與政策討論及提供教育,發揮積極作用,成為全球著作權界的資源。 四、增進資料使用 在提供服務的過程中,著作權局蒐集了各類有價值的著作權相關資訊。此外,其亦網羅與內部運營績效、網路指標有關的其他資料。著作權局將加強資料的開發和使用,並以此作為決策的論證基礎、改進組織績效衡量標準,並使內、外部受眾更容易取得該等資料。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
加拿大交通部提出加拿大自駕系統安全評估文件加拿大交通部(Department of Transport Canada)於2019年1月發布「加拿大自駕系統安全評估(Safety Assessment for Automated Driving Systems in Canada)」文件,該文件將協助加拿大企業評估其發展高級(SAE第三級至第五級)自駕層級車輛之安全性,並可與美國相關政策進行整合。該文件指出,因相關技術尚在發展之中,不適合使用強制性規範進行管制,因此將利用引導性之政策措施來協助相關駕駛系統安全發展。加拿大交通部於文件中指出可用於評估目前自駕車輛研發成果之13種面向,並將其分類為三個領域: 自駕技術能力、設計與驗證:包含檢視車輛設計應屬何種自駕層級與使用目的、操作設計適用範圍、物件及事件偵測與反應、國際標準、測試與驗證等。 以使用者為核心之安全性:包含安全系統、人車界面與控制權的可取得性、駕駛/使用人能力與意識教育、撞擊或系統失靈時的運作等。 網路安全與資料管理:包含管理網路安全風險策略、售後車輛安全功能運作與更新、隱私與個資保障、車輛與政府分享之資訊等。 加拿大交通部鼓勵企業利用該文件提出安全評估報告並向公眾公開以增進消費者意識,另一方面,該安全評估報告內容也可協助加拿大政府發展相關安全政策與規範。
電子商務應用與解釋之不易,提高法院裁判難度由於電子商務的應用往往涉及一些技術層面概念,當法律的適用遇到這些應用與解釋時,不免提高法院在裁判上的困難度。 以美國馬里蘭州上訴法院在五月初進行的 Beyond Systems Inc. v. Realtime Gaming LLC. 案件言詞辯論為例,由於該案涉及網路與法院管轄權之爭議,審理該案的數位法官均坦承對於律師在言詞辯論過程中所提到的一些技術名詞解釋感到理解上有些困難。該案是由位在馬里蘭州的原告指控位於喬治亞州發展互動軟體的公司,聲稱在 2003 年底自被告收到 240 封垃圾電子郵件,違反該州的反垃圾郵件法。馬里蘭州的地方法院駁回原告的訴訟,乃因現有證據很難判斷被告與馬里蘭州之間有地源上的關聯性,故該法院對於被告沒有管轄權。在上訴法院的言詞辯論中,原告指稱,從新墨西哥州所寄發的電子郵件內附有被告的網站連結;而被告則表示其並未寄發大量垃圾郵件給原告,此外,光是網站的存在以及在網際網路上提供資訊並不能做為法院主張管轄權的依據。 儘管雙方律師在法庭上互執己見就該案從不同角度進行辯論,但兩邊律師皆表示,要在現階段於法庭上對電子商務及電子通訊提出定義及解釋都不是容易的事,尤其在網際網路這塊領域中,要認清誰是行為主體是難度很高的事。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。