美國聯邦通訊委員會(Federal Communications Commission, FCC)於2024年3月14日通過「衛星補充涵蓋(Supplemental Coverage from Space, SCS)」的監理架構,未來將增修聯邦法規電信專章(Title 47 of Code of Federal Regulation)開放600 MHz、700MHz、800 MHz、1800MHz中部分頻段及AWS H-block(1915-1920 /1995-2000 MHz),容許衛星通訊業者向地面行動通訊業者租用頻譜提供SCS服務。
SCS能讓用戶透過手機等既有的行動通訊終端接收衛星訊號,如Starlink目前正與T-mobile合作試驗,透過其第二代低軌衛星提供的手機直連(Direct to Cell)服務,能大幅延伸地面行動通訊系統的涵蓋區域。但為了最大程度防止有害干擾,FCC劃出6個獨立地理區域(Geographically Independent Area, GIA),地面行動通訊業者若要將頻譜出租予衛星通訊業者,除出租頻率需屬於SCS頻段外,還必須在一個GIA內擁有所有與出租頻率同頻的所有執照(all co-channel licenses),而衛星通訊業者僅能基於頻率租用協議,在該GIA內以次級使用的方式提供SCS服務。
雖然2023年底於杜拜落幕的世界無線通訊大會(WRC-23)才剛決議(Resolution com6/9 WRC-23)把「研究指配新頻率供衛星直接與地面行動通訊終端連接,以補充地面行動通訊的涵蓋範圍」納入WRC-27的議程項目 (Agenda Item 1.13 WRC-27),FCC就搶先開放SCS頻段,但表示會積極參與國際研究與活動,確保在國際電信聯盟(International Telecommunication Union, ITU)的無線電規則(Radio Regulation)下建立的SCS相關國際監理機制能取得重大進展,並隨著SCS市場的發展逐步開放能夠運用的頻段與應用場景,期能充分發揮衛星通訊與地面行動通訊整合的效益,互補不易涵蓋的區域並無縫銜接,達成「未來單一網路」(Single Network Future)的政策願景。
2022年11月美國OpenAI公司推出人工智慧大型語言模型ChatGPT,提供全球使用者透過輸入文本方式向ChatGPT提出問題,雖營業秘密不需絕對保密,惟是否會「因向ChatGPT揭露營業秘密而使營業秘密喪失了秘密性」? 依OpenAI公司「非API訪問數據政策」規定,ChatGPT透過OpenAI公司的AI訓練人員審核「使用者上傳至ChatGPT的資訊」,提供ChatGPT反饋,強化ChatGPT進行有效的學習,讓ChatGPT模仿人類語言回覆使用者所提出的問題。在AI訓練人員未將「使用者上傳至ChatGPT的資訊」交由ChatGPT訓練、學習前(上次訓練是在2021年9月),此聊天內容不會成為ChatGPT給其他使用者的回答,此時資訊對於公眾仍具秘密性。依據ChatGPT的使用條款第5(a)條之單方保密義務規定:「OpenAI公司、其子公司及其他第三方公司可能賦予使用者『機密資訊的接觸權限』,但使用者僅限於使用條款所允許的服務中使用該些機密資訊,不得向第三方揭露該機密資訊,且使用者至少應採取合理的注意保護該機密資訊。所謂機密資訊係指OpenAI公司、其子公司及其他第三方公司(1)指定的非公開資訊,或(2)合理情況下,被認定為機密資訊者,比如軟體、規格及其他非公開商業資訊。」。即ChatGPT對於使用者輸入的聊天內容不負保密義務。 公司將程式碼、會議紀錄等敏感資訊與ChatGPT共享,不必然屬於「因揭露營業秘密而使營業秘密喪失秘密性」,考量訓練數據量大,秘密性取決於周遭環境與揭露性質,例如: 1.揭露的資訊類型,比如飲料配方可能會比客戶名單更容易取得。 2.揭露的環境,比如競爭對手、大眾是否能提出具體問題,以致能取得他人聊天內容的營業秘密。 為在ChatGPT的趨勢下確保營業秘密的秘密性,建議企業採取的管理策略如下: 1.透過「資訊分類」以識別可共享的資訊。 2.審核涉及敏感資訊的協議、公司政策及供應商契約。 3.採取實體、數位的資訊保密措施,並留意尊重員工隱私,比如限制接觸某些網站或應用程式,應留意員工的手機是否能繞過此限制。 4.建立公司保密文化,如透過公司培訓、新人入職教育訓練,定期提醒其應負擔的保密義務。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
德國新營業秘密保護法—契約擬定「禁止逆向工程」條款建議德國新營業秘密保護法(The new German Trade Secrets Act, TSA)其中一個亮點即為:除非有明確契約或其他法規要求,逆向工程是合法的,其規範於該法第3條第1款,德國以往舊法(不正競爭防止法)並未特別明文,我國營業秘密法亦同。現今企業應盡快透過調整契約內容、保密政策或保密技術來防止該類法所「允許」之情形發生[1],以避免供應鏈間之風險。德國法律專家提出有關「制定合作契約」建議供參: 禁止條款應有期間明文:契約起草禁止逆向工程條款時需注意其法律效力。法明文允許進行逆向工程,也代表著可促進企業市場參與並能從現有技術中受益做進一步發展。如契約一律禁止形同限制經濟自由,無論該條款訂於平行契約(如研發契約)或於垂直契約(如授權契約),往後遇有爭議恐被法院認為條款無效。故可折衷於「期間」加以限制,禁止逆向工程直到產品或服務上市為止,基本上企業只有在確信可以收回成本情況下才會投資於新技術開發。合理而言應在產品或服務公開上市後,才可以對產品或服務進行逆向工程。 注意誠實信用原則並延長條款效力:現行法就禁止逆向工程與否可由締約雙方協議。該禁止條款並不當然有違德國民法第307條第2項誠實信用原則而不利益於締約雙方之情況。但為避免仍有違誠實信用原則疑慮,契約可明確約定於產品或服務上市前不限制締約人使用相對人產品或服務並從中發現技術或資訊,也確保該期間內營業秘密所有權人之營業秘密專有權。合作契約亦可約定禁止條款於契約提早終止一定期間內仍有效。 [1]Dr. Henrik Holzapfel,New german law on the protection of trade secrets, https://www.mwe.com/insights/new-german-law-protection-trade-secrets/ (last visisted Sep.25,2019).
日本政府擬修法擴大個人編號卡(My Number Card)資料使用及調取範圍日本政府於2022年11月29日公布「個人編號法」(平成二十五年法律第二十七号,行政手続における特定の個人を識別するための番号の利用等に関する法律)之預計修正內容。 目前個人編號法第9條第2項主要限定於社會保障、稅收、災害防治三個領域,該法對哪一些行政機關能調取,以及可調取個人資料的種類均有詳細規定。本次修正案目的為將個人編號的用途擴大,除了前揭所提三個領域外,將再包括國家資格管理、汽車登記以及外籍居民行政程序、國家急難救助金及其他津貼發放等。其次,為擴大個人編號用途與增加運用彈性,此次修法重點之一在於擴大該法第4章第19條特定個人編號(My Number)提供限制中,第17款關於其他依據「個人資料保護委員會」所訂規則準用事項範圍。未來日本政府可透過「政省令」的修改(基於國會立法授權,而由行政部門所頒訂,具有對外法拘束力,類似我國法規命令位階),讓政府及相關機關能在有需要時即可蒐集特定個人編號,以迅速、彈性地對應外在情況。 本案若經國會審議通過後,細節部分還需約時二年修改作業系統,最快預定令和7年(2025年度)施行。其他修正重點如:1.將公家機關掌握民眾銀行帳戶資訊和個人編號自動連結,此舉係為改善疫情期間之問題,未來將可使政府發放補助金及急難救助金時更為順暢;2.尚未取得個人編號卡仍可申請「資格確認書」參加社會保險或診療;3.嬰幼兒五歲前「個人編號卡」都不須附上照片等。 唯輿論有批評,在尚未經過國會及有識者充分討論前,貿然大幅擴大資料調取、使用範圍,尤其日本政府計畫將個人所有銀行帳戶都強制連結個人編號,可能讓政府更容易掌握民眾資訊,像是追蹤稅務狀況、打擊逃漏稅等。日本「個人編號法」主管機關總務省則再三保證個人編號卡晶片不會儲存稅金、年金等個人資料,即使作為醫療或健康用途時,也不會紀錄健檢結果和服用藥物等訊息。雖然仍有部分待改進處,惟日本以專法規定個人編號卡儲存資料之種類與範圍,並於該法中說明相關管理措施,仍值得我國未來密切關注。