「安全、韌性、高效、永續的數位基礎設施」,是歐盟「數位十年計畫」(Digital Decade Policy Programme 2030)所擘劃的政策目標之一。執委會於2024年2月21日發布「如何掌握歐洲的數位基礎設施需求?」(How to master Europe's digital infrastructure needs ?)白皮書,詳細盤點歐盟數位基礎設施的發展現狀及所面臨的挑戰,提出可能的政策方案並公開諮詢各界意見。
其中有關頻率管理的部分,執委會認為成員國間各自為政的頻率釋出與管理政策拖累了整體歐盟的5G布建進程,目前5G的涵蓋率與普及率仍不如預期,成員國間的數位發展程度也參差不齊,法規環境差異對跨境提供服務所造成的障礙亦導致數位單一市場難以成形。為避免相同困境在6G重演及因應發展衛星通訊服務帶來的跨境頻率管理議題,歐盟將更進一步同調各成員國的頻率管理政策與規範環境,提高歐盟對頻率政策的掌控,確保歐盟通訊網路的安全性、獨立性和完整性。
海纜的安全性亦受到關注,歐盟既有電子通訊網路和服務的監管架構並未就雲端服務業者規範相關的義務,但隨著大型雲端服務業者持續投入海纜建設,歐盟已經有超過60% 的國際流量透過非公眾網路業者建設的海纜傳輸,監理上的漏洞已經形成歐盟通訊網路的安全隱患。
執委會將與各界展開廣泛的討論與磋商,研議能確保安全與韌性之數位基礎設施的政策工具及監理框架。在頻率管理方面,希望能提高歐盟的一致性與協調性,為地面通訊、衛星通訊及其他新興應用的頻率使用提供更統一甚至單一的授權流程及選擇條件,以促進數位單一市場的形成;在海纜方面亦規劃建立歐盟層級的聯合治理體系,將針對海纜的風險、弱點及依賴性做全面性的評估,亦將資助既有海纜的升級與新海纜的設立,同時確保供應鏈的安全性及降低對高風險第三國的依賴。
澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年11月發布「2018-2019年數位健康年報」,其中針對「我的健康紀錄系統」(My Health Record System)日前發生資料外洩事件提出檢討及隱私建議。 「我的健康紀錄系統」於2012年開始由澳洲數位健康局(Australian Digital Health Agency)負責維運,所有健康報告以電子形式通過網站存檔或讀取,包括處方藥紀錄、醫生診療記錄、影像檢查以及其它測試紀錄等,所有資訊將置於網路並授權醫療專業人員,例如醫生、藥劑師、醫院工作人員和專職醫療人員(例如護士或物理治療師),均可登錄查詢。 「我的健康紀錄系統」原先以民眾自願選擇加入模式運作,以選擇性線上註冊方式概括同意健康資料存取。隨後為促進醫療產業發展,澳洲政府宣布「我的健康紀錄系統」全國適用並提供退出機制至2019年1月31日。而2018年澳洲修訂「我的健康紀錄法」(My Health Records Act 2012)強化個人資料管理相關規範,例如:提供永久刪除權、不得適用於保險目的、違反關鍵隱私保護而增加民事和刑事處罰等。 「2018-2019年數位健康年報」指出,隨著「我的健康紀錄系統」於2019年2月從選擇性註冊模式變為退出模式,關於隱私疑慮的查詢和投訴大幅增加。2018年至2019年OAIC收到57件投訴案,OAIC更對數位醫療產業中的受監管企業進行隱私評估,包括私人醫院、藥房等。為解決民眾疑慮,「我的健康紀錄法」修訂賦予永久刪除權,使投訴數量開始遞減,OAIC亦為醫療服務提供者發布有關保護患者個人健康資料相關指引,並與衛生部門組織合作,促進良好的隱私保護觀念,以增進健康服務提供者對預防和應對資料外洩的理解。
瑞士公投通過基改生物培育禁令瑞士國會在2003年通過法律,允許有條件種植基改作物,但是反對者要求禁種的聲浪仍高,為此,瑞士甚至特別舉行了公民投票。公投結果在11月底出爐,正式確定未來五年瑞士境內將禁止種植基因改造植物或培育基因改造動物。根據官方資料顯示,有55.7%的投票者支持這項公投案,支持者多為農民、環保人士、生態學家和消費者協會。 反基因改造生物(GMO)者表示,基改農作物對消費者與農民並無益處,禁令將可使得瑞士有更多時間來評估GMO對於生態環境安全的衝擊,並且可使農民有更多的機會銷售傳統農產品和有機農產品。 雖然此一決定僅禁止GMO之種植或養殖,並沒有禁止基因改造科技的研究以及基改產品的進口,但瑞士生技業及科學研究人員仍極憂心地表示,實驗室的基改研究成果若無法量產上市,仍將會嚴重打擊其國內基因科技研究,造成人才及產業外移。
世界衛生組織透過「COVID-19疫苗全球取得機制COVAX」,促進疫苗研發及公平分配世界衛生組織(World Health Organization, WHO)於2020年8月24日公布「COVID-19疫苗全球取得機制(COVID-19 Vaccines Global Access Facility, COVAX)」,由全球疫苗與預防注射聯盟(Global Alliance for Vaccines and Immunisation, GAVI)、流行病預防創新聯盟(Coalition for Epidemic Preparedness Innovations, CEPI)及WHO共同主導,與多家疫苗廠商合作,協助取得多種疫苗組合的授權及核准,促進COVID-19全球疫苗研發及公平分配。 COVAX是WHO「獲取COVID- 19工具加速計畫(Access to COVID-19 Tools Accelerator, ACT Accelerator)」下的疫苗分配機制。ACT-Accelerator透過匯集各國政府、衛生機構、科學界、產業界、民間團體的力量,共同合作開發創新診斷方法、加速融資研發治療工具、制定公平分配與交付疫苗機制、確保衛生系統與社區網路連接等四大領域,以盡快結束大流行疫情。 COVAX作為COVID-19疫苗聯合採購機制,預計2021年底要提供20億劑疫苗,籌資181億美元;由GAVI與高收入國家簽訂投資契約,透過全球融資機制採購9.5億劑疫苗,同時搭配WHO制定的疫苗倫理分配架構,使COVAX能夠集中各國經濟體的購買力,保證候選疫苗的採購數量,鼓勵擁有專業知識的疫苗廠商盡速投入大規模的新疫苗生產,確保參與COVAX的國家及經濟體,皆能迅速、公平公正地取得大量有效的疫苗。 COVAX承諾將為全球92個中低收入經濟體提供參與COVAX的融資工具;超過80個高收入經濟體已提交參與COVAX的意向書,將從公共財政預算中編列全球疫苗研發的捐助資金,並與92個中低收入國家結成疫苗合作夥伴。透過COVAX機制產出的疫苗,將會按照參與國人口比例公平地分配給所有國家,並且優先提供疫苗給衛生醫療工作者、老年人及疾病弱勢群體;隨後再根據各國家需求、易受感染程度與COVID-19威脅情況,提供更多劑量的支援。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).