巴西國家衛生監督局(Agência Nacional de Vigilância Sanitária, Anvisa)為強化國際監管機構間信任,並促進具有臨床效益的健康產品快速流通,於2022年8月通過第741號合議理事會決議(Resolução da Diretoria Colegiada - RDC N° 741),宣布若已透過等效外國監管機構(Autoridade Reguladora Estrangeira Equivalente, AREE)–即具有與 Anvisa一致之監管方式的外國監管機構–認定符合公認之品質、安全性和有效性標準之醫療產品,可利用AREE的註冊或授權證明相關文件,於巴西當地申請上市註冊的過程中,獲得簡化審查的優惠措施。在此框架下,Anvisa於2024年4月4日通過第290號規範性指令 (Instrução Normativa - N° 290),內文指出醫療器材及體外診斷醫材產品可於2024年6月3日起,於註冊上市的過程中提交AREE之證明文件以進入簡審程序。
第290號規範性指令明確指出,目前獲巴西政府認可之醫療器材AREE及對應之註冊或授權證明,包含以下機構:(1)美國食品及藥物管理局(U.S. Food and Drug Administration, FDA)之上市前批准(PMA)、510(k)或De Novo;(2)加拿大衛生部(Health Canada, HC) 之醫療器材許可證;(3)澳洲醫療用品管理局(Therapeutic Goods Administration, TGA)之澳洲治療用品登記冊 ;(4)日本厚生勞動省(Ministry of Health, Labour and Welfare, MHLW)之上市前批准。另外,欲適用簡化程序的註冊產品,則需與AREE頒發授權證明之產品具有「本質上相同性」(Dispositivo Médico Essencialmente Idêntico),具體包含產品之技術規格、適應症、預期用途、製造商、製造流程,以及安全與性能上的一致性。
此政策透過值得信賴的監管單位把關,不僅可促進國際間醫療器材之貿易流通,更可能有效減少巴西當局於審查過程的行政成本,進而提升國內的產品審查效率。然值得注意的是,在各國醫療器材監管法規與行政裁量基準不完全一致的現況下,各國政府對於醫療器材之分類、臨床數據及健康風險的解釋與判斷結果也不見得相同,Avisa未來在醫療器材上市審核的過程中,將如何看待及利用來自AREE之證明文件,有待未來持續觀察其實施成效。
為了減少美國專利訴訟泛濫,及防止專利蟑螂輕易向他人提起專利訴訟,美國最高法院在2014年6月 對兩件專利訴訴訟案進行判決,此決定也對專利權人及專利蟑螂不利。 首先,最高法院針對Limelight Networks v. Akamai Technologies否決聯邦上訴法院的判決。聯邦法院認為Limelight雖然沒有使用Akamai商業方法中每一個過程步驟之專利,但其使用其方法專利之其中方法就算造成間接侵權(induced infringement)。然最高法院認為,聯邦法院的判決對於間接構成侵權有誤解,Limelight所使用的商業方法並沒有引導間接構成侵權。此決定對於現今網路科技盛行之時代有很重要的影響,更防止不實施專利體及專利蟑螂隨意對潛在對象提起專利訴訟。 另一個案件為Nautilus, Inc. v. Biosig Instruments, Inc,最高法院亦駁回聯邦上訴法院之判決,對於專利說明(patent claim)的內容清楚性作出新的說明。聯邦上訴法院在此案中對於專利法第112條中專利說明的要求作出解釋,認為凡是專利說明不會難以解釋且模糊(insolubly ambiguous),專利說明皆可符合專利法規定。但最高法院採不同見解,認為聯邦法院的見解不符合專利法之規定,規定專利說明的內容必須要合理且明確,使可符合專利法的要求。此決定對於專利蟑螂尤其是一大打擊,過往專利蟑螂多以模糊的專利說明來進行專利訴訟,但今後要求明確的專利說明,讓雙方有更清楚的專利說明依據進行專利訴訟。
美國聯邦通訊委員會補助無訊號地區3G網路建設美國聯邦通訊委員會(Federal Communications Commission, FCC)自2010年推動「國家寬頻計畫」(National Broadband Plan)以來,即進行多項寬頻建設,使民眾於生活、工作及旅行途中,都能享受到行動寬頻網路與語音服務。而FCC於2012年2月規劃利用原普及服務基金(Universal Service Fund)下的行動通信基金(Mobility Fund)(兩者於2011年底均已劃入連接美國基金“Connect America Fund”)提撥出3億美金,一次性的提供業者於訊號未涵蓋區域進行3G網路基礎建設,並在未來三年內提供5億美金以供業者持續營運。 FCC預計於2012年9月2日,以反向拍賣(reverse auction)方式進行。由業者提出佈建方案、使用技術,並證明在競標區域內擁有足夠頻譜與建設能力,方能進入投標,最後由需要補助最少之業者得標。FCC希望利用此方式能促進市場競爭,使業者提出更積極之佈建方案。得標業者除獲得建設與營運補助外,並能為商用經營。本次拍賣將與其他頻譜執照拍賣方式類似,但就細部拍賣規則,將徵詢公眾意見後做出決定。 而為避免補助區域與已有3G訊號區域重疊,FCC就無3G訊號涵蓋區域繪製全國地圖,並公佈予投標者參考。原規劃區域為491,000區,但因過於狹小恐難以經營,故合併後為6,200區供業者競標。得標者負有義務必須於兩年之內於標得區域內完成3G網路佈建,或於3年內完成4G建設。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。