美國專利商標局(United States Patent and Trademark Office, USPTO)於2024年3月15日至5月14日間,就促進研發成果商業化之方法徵集公眾意見;本次議題包括:
(1)在研發成果商業化的過程(尤其是利用智慧財產制度以進行技術移轉時),所遇到的最大挑戰及機會各為何?以及希望USPTO提供何種協助?
(2)在進行綠色和氣候技術、關鍵和新興技術移轉時,有無遇到任何智慧財產相關的挑戰及機會,以及希望USPTO提供何種協助?
(3)請列出可促進研發成果運用、綠色和氣候技術及關鍵和新興技術移轉的政策與作法;
(4)請列出各利害關係人在界定潛在被授權人及進行技術移轉時,所面臨的智慧財產相關挑戰,以及現行制度有無需要改變,以減少這些挑戰;
(5)請就USPTO於新冠肺炎疫情期間所推動,一用於媒合新冠肺炎治療技術供需雙方之「Patent 4合作夥伴平台計畫」(The Patents 4 Partnerships platform)進行評論,包含促成合作關係之作法;
(6)請就USPTO於2022年7月參與之「世界智慧財產權組織(WIPO)綠色計畫」(WIPO GREEN)進行評論,包含USPTO可如何促進計畫的成功與擴大影響力;
(7)請列出USPTO可協助特定人士、技術、產業、公司,降低研發成果運用過程中面臨挑戰之可能作法;
(8)請列出USPTO可協助「代表性不足群體」(underrepresented group)、個體發明者、中小企業提升研發成果運用認知,及克服現行挑戰的作法;
(9)請列出USPTO可協助少數群體服務機構(Minority Serving Institutions, MSIs)、傳統黑人大學(Historically Black Colleges and Universities, HUCUs)擴大其研發成果商業化的機會;
(10)USPTO在促進研發成果商業化上,可以發揮的其他作用;
(11)其他國家可更促進研發成果商業化的作法。
本文為「經濟部產業技術司科技專案成果」
歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)於2019年12月19日發布「評估限制隱私權和個人資料保護基本權利措施之比例指引」(EDPS Guidelines on assessing the proportionality of measures that limit the fundamental rights to privacy and to the protection of personal data),旨在協助決策者更易於進行隱私友善(privacy-friendly)之決策,評估其所擬議之措施是否符合「歐盟基本權利憲章」(Charter of Fundamental Rights of the European Union)關於隱私權和個人資料之保護。 該指引分為三大部分,首先說明指引的目的與如何使用;第二部分為法律說明,依據歐盟基本權利憲章第8條所保護個人資料的基本權利,並非絕對之權利,得於符合憲章第52條(1)之規定下加以限制,因此涉及處理個人資料的任何擬議措施,應進行比例檢驗;指引的第三部份則具體說明決策者應如何評估擬議措施之必要性和比例性之兩階段檢驗: 必要性檢驗(necessity test) (1) 步驟1:初步對於擬議措施與目的為詳細的事實描述(detailed factual description)。 (2) 步驟2:確定擬議措施是否限制隱私保護或其他權利。 (3) 步驟3:定義擬議措施之目的(objective of the measure),評估其必要性。 (4) 步驟4:特定領域的必要性測試,尤其是該措施應有效(effective)且侵害最小(the least intrusive)。 若前述評估認為符合必要性,則接續比例性檢驗,透過以下4步驟評估: 比例性檢驗(proportionality test) (1) 步驟1:評估目的正當性(legitimacy),擬議措施是否滿足並達到該目的。 (2) 步驟2:擬議措施對隱私和資料保護基本權的範圍、程度與強度(scope, extent and intensity)之影響評估。 (3) 步驟3:繼續進行擬議措施之公平對等評估(fair balance evaluation)。 (4) 步驟4:分析有關擬議措施比例之結果。 科技時代的決策者在立法和政策擬定時,面臨的問題愈趨複雜,需要全面性評估,擬議措施限制應符合歐盟法規,且具必要性並合於比例,隱私保護更是關鍵,參酌該指引搭配EDPS於2017年發布之「必要性工具包」(Necessity Toolkit),將使決策者所做出的決策充分保護基本權利。
什麼是「商標的反向混淆誤認」?2008年,連鎖咖啡店85度C告85.1度C商標侵權,台北地院以85.1度C影響了85度C的商譽和正常收益,判賠新台幣47萬元。-這是商標侵權爭訟常見「商標混淆」的具體場景,也是所謂的「正向混淆」(Direct Confusion)。試想,現在主客易位,85.1度C 是間小店,耕耘許久仍沒沒無聞;而85度C推出即一炮而紅、門庭若市。85度C是後來者,他是否可以商標混淆為由,主張85.1度C影響了其商譽和正常收益?這個「後商標比前商標強勢」的假設就涉及「反向混淆」(Reverse Confusion)。 所謂「商標的反向混淆誤認」,按經濟部智慧財產局〈行政法院105年度判字第465號判決研析〉,係指:「後商標因較諸前商標廣為消費者所知悉,消費者反而誤以為前商標係仿冒後商標,或誤認為前商標與後商標係來自同一來源,或誤認兩商標之使用人間存在關係企業、授權、加盟或其他類似關係。」 美國於1976年之Big O Tire Dealers, INC. v. Goodyear Tire & Rubber Co.案首度在侵害商標權訴訟承認有反向混淆之適用。然而,由於美國採「使用主義」(First to use),商標之認定係以使用的先後判斷之。而我國採註冊主義,商標先後以申請註冊的時間判斷之。我國最高行政法院105年度判字第465號判決則明確表示商標法明文規範商標註冊申請乃採先申請主義,排除反向混淆理論之適用。
美國聯邦交易委員會延展紅旗規則之施行日美國聯邦交易委員會(Federal Trade Commission,FTC)因應眾議院之要求,再次延展了紅旗規則(Red Flags Rule)之施行日,目前將由原先預定之2009年11月1日,延後至2010年6月1日施行。此規則最初預計於2008年11月1日施行,此次已是第四次延展。 所謂紅旗規則,原為「公平與正確信用交易法(Fair and Accurate Credit Transactions Act)」中之規定,依該法眾議院指示美國聯邦交易委員會及相關部門制定法規,用以規範金融機構及授信單位降低身分盜用之風險。基於此一指示,金融機構及授信單位必須研擬防止身分盜用的方案。詳言之,紅旗規則係要求凡管理使用包括性帳戶(covered account)者都應研擬並執行防止身分盜用之書面計劃。所謂的包括性帳戶係指:1.用於多次消費計算用途之帳戶,如信用卡帳戶、汽車貸款帳戶、手機帳戶、支票帳戶等;2.所有預期會產生身分盜用風險的帳戶,並不僅指於金融機構中所設立之帳戶。而前述應研擬之計畫將用以協助確認、偵測並解決身分盜用之行為。 由於只要用於支付計算,或有可能產生身分盜用風險之帳戶,均為包括性帳戶,而用於支付會計師款項之帳戶亦包含在內。惟美國會計師協會(American Institute of Certified Public Accountants, AICPA)要求FTC免除註冊會計師適用紅旗規則,該協會執行長Barry Melancon認為:「我們很在意紅旗規則的廣泛應用,因為我們並不認為當CPA之客戶付款時,會產生相當的身分冒用風險。」他指出該紅旗規則所帶來之負擔已超過其風險。AICPA並要求各州會計師協會去函對FTC表達排除適用之意見。而Melancon贊同FTC延後適用紅旗原則之決定,其並認為紅旗規則並無須廣泛運用於會計業,因為作為值得信賴的顧問,會計師對於其客戶應該都很熟悉,也會要求對身分資訊採取嚴格的隱私保護標準。 為了推動紅旗規則之適用,FTC已於紅旗規則之官方網站提供了該規則之適用綱領,並以座談會之方式對各團體進行運用之培訓。同時以出版企業之應用綱領,大量之文宣及宣導短片,對民眾提供諮詢服務等方式推廣紅旗規則。 而司法實務界對於此一規則之適用範圍亦開始表達其見解,在2009年10月30日,哥倫比亞地方法院判決律師業不適用紅旗規則。不過此次的延展施行公告並不會影響相關案件的進行及上訴流程,也不會影響其他聯邦部門對於金融機構及授信單位的監督。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。