歐盟執委會(European Commission)於2023年提出《醫藥品包裹》(Pharmaceutical Package)修訂多項歐盟藥品法規。其中也調整資料保護期(period of data protection)和市場獨占期(market exclusivity)等制度,激勵藥品創新、增加藥品可及性、並強化歐盟面對全球公衛挑戰的能力。修訂草案由環境、公共衛生與食品安全委員會(Committee on Environment, Public Health and Food Safety)通過後,目前已於2024年4月由歐洲議會(European Parliament)投票一讀通過,若歐洲理事會決議通過,即完成修法。為協助產業界提早因應布局,本文擬介紹歐洲議會一讀通過的草案中,資料保護期與市場獨占期的運作方式。
一般新藥
一般新藥的資料保護期由現行的8年縮減至7年半。但符合以下條件時,則能將資料保護期延長:滿足未滿足醫療需求(12個月);含有新活性物質並進行比較性臨床試驗(6個月);於歐盟境內與歐盟研究實體合作開發(6個月),若同時符合多項條件時,最多可將資料保護期延長1年。此外,新藥與現有療法相比具有顯著的臨床優勢時,還能將資料保護期結束後的市場獨占期由2年延至3年,但僅限一次。
針對抗藥性微生物抗生素
引入資料專屬期券(Data Exclusivity Voucher),獲授權的產品最多可將資料保護期延長12個月,該權利能轉讓給其他醫藥產品,但轉讓僅限一次。
孤兒藥
一般孤兒藥的市場獨占期由現行的10年縮減至9年,然而滿足「高度未滿足醫療需求」的罕病孤兒藥最長可享有11年的市場獨占期。但在非額外的市場獨占期剩餘2年以內時,不得阻擋學名藥與生物相似藥之上市申請。
本次修法加速一般的學名藥與生物相似藥進入市場,但同時也加強高品質與創新藥品的保護進行支持;而對於市場機制未能激勵投入的重要需求,如新型抗生素,則提供具可轉讓性的額外獎勵,增添靈活度和價值,以吸引更多企業投入研發。
本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。 而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。 德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。 故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。 修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。
中國衛生部發布「抗菌藥物臨床應用管理辦法」長久以來,中國民眾對於抗菌藥物(如抗生素等)存有高度的依賴性,造就了國內規模龐大的抗菌藥物市場,依據中國衛生部統計,中國民眾對抗菌藥物的人均消費額幾乎是美國民眾的10倍。對此,世界衛生組織早於2011年4月7日便正式提出警告與呼籲,若中國未能控制抗菌藥物濫用的情況,很快將面臨「無藥可用」的窘境,並演變為全球人類的災難。 為扭轉前述抗菌藥物濫用狀況,中國衛生部於2012年4月24日正式發布了「抗菌藥物臨床應用管理辦法」(以下稱管理辦法),分別對於抗菌藥物的使用及醫療院所之管理制度作了如下的完整規範: 1. 對抗菌藥物採分級管理制,分為「非限制使用級」、「限制使用級」及「特殊使用級」三類,並要求醫療院所依此分類,擬定「抗菌藥物供應目錄」,凡具有同一通用名稱者,其注射型和口服型各不得超過兩種、具有相似或相同藥理學特徵的藥物亦不得重複列入。 2. 依上述分級對抗菌藥物作臨床使用管理:「限制使用級」者,只有當發生嚴重感染、免疫功能下降合併感染,或病菌只對限制級藥物有反應時,才允許使用;「特殊使用級」者,非經醫療院所內設置的「抗菌藥物管理工作機構」同意,不得使用;惟若係為搶救生命垂危的病患或其他緊急情況下,可以越級使用,但須於24小時內補行程序。 3. 各院所必須設置「抗菌藥物管理工作機構」或專責人員,負責制定抗菌藥物管理制度、擬定「抗菌藥物供應目錄」,並建立細菌抗藥預警制度。 管理辦法將於2012年8月起正式施行,一般預料將有助於改善中國抗菌藥物濫用的現象,然用藥限制也必定衝擊現今許多對抗菌藥物產品銷售已存有高度依賴性的企業;相反地,由於管理辦法中明文將「具有抗菌作用的中醫製劑」排除於管制範圍外,或許將促成抗菌中醫藥品的發展契機,而值得持續觀察之。
我國去識別化實務發展-「個人資料去識別化過程驗證要求及控制措施」我國關於個人資料去識別化實務發展 財團法人資訊工業策進會科技法律研究所 2019年6月4日 壹、我國關於個人資料去識別化實務發展歷程 我國關於個資去識別化實務發展,依據我國個資法第1條立法目的在個資之隱私保護與加值利用之間尋求平衡,實務上爭議在於達到合理利用目的之個資處理,參酌法務部103年11月17日法律字第10303513040號函說明「個人資料,運用各種技術予以去識別化,而依其呈現方式已無從直接或間接識別該特定個人者,即非屬個人資料,自非個資法之適用範圍」,在保護個人隱私之前提下,資料於必要時應進行去識別化操作,確保特定個人無論直接或間接皆無從被識別;還得參酌關於衛生福利部健保署資料庫案,健保署將其所保有之個人就醫健保資料,加密後提供予國衛院建立健保研究資料庫,引發當事人重大利益爭議,終審判決(最高行政法院106年判字第54號判決)被告(即今衛福部)勝訴,法院認為去識別化係以「完全切斷資料內容與特定主體間之連結線索」程度為判準,該案之資料收受者(本案中即為衛福部)掌握還原資料與主體間連結之能力,與健保署去識別化標準不符。但法院同時強調去識別化之功能與作用,在於確保社會大眾無法從資料內容輕易推知該資料所屬主體,並有提到關於再識別之風險評估,然而應採行何種標準,並未於法院判決明確說明。 我國政府為因應巨量資料應用潮流,推動個資合理利用,行政院以推動開放資料為目標,104年7月重大政策推動會議決議,請經濟部標檢局研析相關規範(如CNS 29191),邀請相關政府機關及驗證機構開會討論,確定「個人資料去識別化」驗證標準規範,並由財政部財政資訊中心率先進行去識別化驗證;並以我國與國際標準(ISO)調和之國家標準CNS 29100及CNS 29191,同時採用作為個資去識別化驗證標準。財政部財政資訊中心於104年11月完成導航案例,第二波示範案例則由內政部及衛生福利部(105年12月通過)接續辦理。 經濟部標準檢驗局目前不僅將ISO/IEC 29100:2011「資訊技術-安全技術-隱私權框架」(Information technology – Security techniques – Privacy framework)、ISO/IEC 29191:2012「資訊技術-安全技術-部分匿名及部分去連結鑑別之要求事項」(Information technology – Security techniques – Requirements for partially anonymous, partially unlinkable authentication),轉換為國家標準CNS 29100及CNS 29191,並據此制訂「個人資料去識別化過程驗證要求及控制措施」,提供個資去識別化之隱私框架,使組織、技術及程序等各層面得整體應用隱私權保護,並於標準公報(107年第24期)徵求新標準之意見至今年2月,草案編號為1071013「資訊技術-安全技術-個人可識別資訊去識別化過程管理系統-要求事項」(Management systems of personal identifiable information deidentification processes – Requirements),主要規定個資去識別化過程管理系統(personal information deidentification process management system, PIDIPMS)之要求事項,提供維護並改進個人資訊去識別化過程及良好實務作法之框架,並適用於所有擬管理其所建立之個資去識別化過程的組織。 貳、個人資料去識別化過程驗證要求及控制措施重點說明 由於前述說明之草案編號1071013去識別化國家標準仍在審議階段,因此以下以現行「個人資料去識別化過程驗證要求及控制措施」(以下簡稱控制措施)[1]說明。 去識別化係以個資整體生命週期為保護基礎,評估資料利用之風險,包括隱私權政策、隱私風險管理、隱私保護原則、去識別化過程、重新識別評鑑等程序,分別對應控制措施之五個章節[2]。控制措施旨在使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊(personal identifiable information, PII)進行去識別化之過程。再就控制措施對應個人資料保護法(下稱個資法)說明如下:首先,組織應先確定去識別化需求為何,究係對「個資之蒐集或處理」或「為特定目的外之利用」(對應個資法第19條第1項第4、5款)接著,對應重點在於「適當安全維護措施」,依據個資法施行細則第12條第1項規定,公務機關或非公務機關為防止個資被竊取、竄改、毀損、滅失或洩漏,採取技術上及組織上之措施;而依據個資法施行細則第12條第2項規定,適當安全維護措施得包括11款事項,並以與所欲達成之個資保護目的間,具有適當比例為原則。以下簡要說明控制措施五大章節對應個資法: 一、隱私權政策 涉及PII處理之組織的高階管理階層,應依營運要求及相關法律與法規,建立隱私權政策,提供隱私權保護之管理指導方針及支持。對應個資法施行細則第12條第2項第5款適當安全維護措施事項「個人資料蒐集、處理及利用之內部管理程序」,即為涉及個資生命週期為保護基礎之管理程序,從蒐集、處理到利用為原則性規範,以建構個資去識別化過程管理系統。 二、PII隱私風險管理過程 組織應定期執行廣泛之PII風險管理活動並發展與其隱私保護有關的風險剖繪。直接對應規範即為個資法施行細則第12條第2項第3款「個人資料之風險評估及管理機制」。 三、PII之隱私權原則 組織蒐集、處理、利用PII應符合之11項原則,包含「同意及選擇原則」、「目的適法性及規定原則」、「蒐集限制原則」、「資料極小化原則」、「利用、保留及揭露限制」、「準確性及品質原則」、「公開、透通性及告知原則」、「個人參與及存取原則」、「可歸責性原則」、「資訊安全原則」,以及「隱私遵循原則」。以上原則涵蓋個資法施行細則第12條第2項之11款事項。 四、PII去識別化過程 組織應建立有效且周延之PII去識別化過程的治理結構、標準作業程序、非預期揭露備妥災難復原計畫,且組織之高階管理階層應監督及審查PII去識別化過程之治理的安排。個資法施行細則第17條所謂「無從識別特定當事人」定義,係指個資以代碼、匿名、隱藏部分資料或其他方式,無從辨識該特定個人者,組織於進行去識別化處理時,應依需求、風險評估等確認注意去識別化程度。 五、重新識別PII之要求 此章節為選驗項目,需具體依據組織去識別化需求,是否需要重新識別而決定是否適用;若選擇適用,則保留重新識別可能性,應回歸個資法規定保護個資。 參、小結 國際上目前無個資去識別化驗證標準及驗證作法可資遵循,因此現階段控制措施,係以個資整體生命週期為保護基礎,評估資料利用之風險,使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊進行去識別化之過程,透過與個資法對照個資法施行細則第12條規定之安全維護措施之11款事項,內化為我國業者因應資料保護與資料去識別化管理制度。 控制措施預計於今年下半年發展為國家標準,遵循個資法與施行細則,以及CNS 29100、CNS 29191之國家標準,參照國際上相關指引與實務作法,於技術上建立驗證標準規範供產業遵循。由於國家標準無強制性,業者視需要評估導入,仍建議進行巨量資料應用等資料經濟創新業務,應重視處理個資之適法性,建立當事人得以信賴機制,將有助於產業資料應用之創新,並透過檢視資料利用目的之合理性與必要性,作為資料合理利用之判斷,是為去識別化治理之關鍵環節。 [1] 參酌財團法人電子檢驗中心,個人資料去識別化過程驗證,https://www.etc.org.tw/%E9%A9%97%E8%AD%89%E6%9C%8D%E5%8B%99/%E5%80%8B%E4%BA%BA%E8%B3%87%E6%96%99%E5%8E%BB%E8%AD%98%E5%88%A5%E5%8C%96%E9%81%8E%E7%A8%8B%E9%A9%97%E8%AD%89.aspx(最後瀏覽日:2019/6/4) 財團法人電子檢驗中心網站所公告之「個人資料去識別化過程自評表_v1」包含控制措施原則、要求事項與控制措施具體內容,該網站並未公告「個人資料去識別化過程驗證要求及控制措施」,故以下整理係以自評表為準。 [2] 分別為「隱私權政策」、「PII隱私風險管理過程」、「PII之隱私權原則」、「PII去識別化過程」、「重新識別PII之要求」。
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。