日本立法保護及促進重要經濟安全資訊之利用

日本國會2024年5月10日通過、同月17日公布《重要經濟安全資訊保護及活用法》(重要経済安保情報の保護及び活用に関する法律,以下簡稱經安資訊保護法),建立安全許可(セキュリティ・クリアランス)制度,規範政府指定重要經濟安全資訊(以下簡稱經安資訊)、向業者提供經安資訊之方式,以及可近用經安資訊之人員資格等事項,以保護與重要經濟基礎設施有關,外流可能影響國家及國民安全之重要資訊,並同時促進此類資訊之利用。

根據經安資訊保護法規定,行政機關首長得指定機關業務相關之重要資訊,如與關鍵基礎設施、關鍵原物料相關,外洩可能影響經濟安全之資訊為經安資訊。並得於下列情形,向其他行政機關、立法機關及司法機關、特定民間業者提供經安資訊:

1.其他行政機關:有利用經安資訊之必要時。

2.立法機關及司法機關:提供資訊對經濟安全不會有顯著影響時。

3.特定民間業者:為促進有助於經濟安全保障之行為,必要時得依契約向符合保安基準之業者提供經安資訊。

此外,經安資訊保護法進一步規定近用、處理經安資訊者,須通過適格性評價(適性評価),評價重點包括當事人犯罪紀錄、藥物濫用紀錄、有無精神疾病、有無酗酒、信用狀況等。由於上述內容涉及當事人隱私,故行政機關進行適格性評價前,須取得當事人同意。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本立法保護及促進重要經濟安全資訊之利用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9233&no=57&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
美國國家標準與技術研究院「隱私框架1.0版」

  美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。   NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。   本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。

美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎

美國國防部(Department of Defense, DoD)於2024年6月25日發布「關鍵點:國防部資訊技術發展戰略」(Fulcrum:DoD Information Technology (IT) Advancement Strategy),將持續促進DoD之IT變革,並為未來奠定基礎。 本戰略描述作戰人員在推動IT方面應達成之目標與重要性,並列出提供聯合作戰IT能力、資訊網路與運算現代化、最佳化IT治理、栽培第一數位人力等四大目標(Line of Effort, LOE),簡述如下: (1)提供聯合作戰IT能力(Provide Joint Warfighting IT Capabilities):在現今不斷變化且充滿競爭的全球環境中,該目標以使用者為中心,提供具功能性、可擴增、永續且安全之IT功能。並以改善作戰人員可用資訊為重點,以利在快節奏、多領域(multi-domain)作戰中獲得決策與競爭優勢。 (2)資訊網路與運算現代化(Modernize Information Networks and Compute):該目標著重於迅速滿足任務與商務需求,利用卓越技術與以資料為中心的零信任(Zero Trust)資通安全方法,提供安全且具更快資料傳輸速度、更低延遲與高度彈性的現代化網路。 (3)最佳化IT治理(Optimize IT Governance):該目標將提高傳送效率、節省成本,且透過從治理到資料獲取系統的簡化政策,以轉變治理制定更好的決策,包括使用強大資料功能。 (4)栽培頂尖的數位人才(Cultivate a Premier Digital Workforce):該目標將確保作戰人員為新興技術之布署做好準備,並持續致力於識別、招募、發展並留住最佳數位人才。其擴展DoD網路人力框架(DoD Cyber Workforce Framework, DCWF),著重於更廣義的數位人力,包括資料、人工智慧、軟體工程的工作角色。

歐盟執委會公佈GMOs法制之評估報告

  歐盟執行委員會(European Commission)於2011年10月28日公佈兩份針對歐盟基因改造作物(Genetically Modified Organisms, GMOs)之評估報告,這兩份報告係由執委會委託兩個獨立顧問機構所完成,評估時間自2009年至2011年。第一份報告係針對GMOs食品與飼料規範(EU's legislative framework in the field of GM food and feed)之評估報告;第二份報告係針對GMOs耕作規範(legislative framework in the area of GMOs cultivation)之評估報告。此兩份報告之重要性在於,其收集來自官方及民間對於GMOs法制之事實陳述與意見,如健康與環境的保護、國內市場的產物規範等議題,可作為未來改善歐盟GMOs法制的基礎。   評估指出,歐盟的GMOs法制就健康與環境保護之規範並無偏誤;但在效率及透明度上,尚有改善之空間。此外越來越多含有基因改造的農作物輸入歐盟造成健康及環境之威脅,而須進一步改善風險評估之作法以及調整相關法制。   在過去一年中,執委會已採納報告中之部分建議,著手針對現存法制作出微調及改善,包括: 1.在GMOs耕作上需要更多的彈性。 2.低度殘留(Low Level Presence, LLP)的解決方案。 3.收集關於GMOs耕作的社會經濟層面之技術資訊。 4.新作物播種技術之評估。 5.監控活動的加強。 6.針對成員國批准風險評估的指導方針(Guideline)法制化之檢討與改革。 7.對於GMOs重要議題的溝通活動之改善。   除上述之改善工作持續進行,在接下來幾週,執委會將針對農產品輸入許可制度提出改善方案,以建立更嚴謹的許可要求。由這兩份報告的公佈,可以預見未來歐盟將持續完善現存法制,而此兩份評估報告將如何影響歐盟的GMOs規範,值得持續觀察。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP