日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險

日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。

隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。

本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下:

1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。

2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。

日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9235&no=55&tp=1 (最後瀏覽日:2026/01/18)
引註此篇文章
你可能還會想看
因應2020年社會實現自動駕駛,日本訂定自動駕駛制度整備大綱

  日本IT綜合戰略本部及官民資料活用推進本部於4月17日公佈「自動駕駛制度整備大綱」。大綱設定2020年至2025年間,日本社會實現自動駕駛下,所需檢討修正之關連法制度。   本大綱中,係以2020年實現自動駕駛至等級4為前提(限定場所、速度、時間等一定條件下為前提,系統獨自自動駕駛之情形),以在高速公路及部分地區之道路實現為條件設定。社會實現自動駕駛有以下課題需克服: 道路交通環境的整備:以自駕系統為行駛,一般道路因為環境複雜,常有無法預期狀況發生,導致自駕車的電腦系統無法對應。 確保整體的安全性:依據技術程度,設定一般車也能適用之行駛環境、設定車輛、自動駕駛之行駛環境條件以及人之互相配合,以達成與一般車相同之安全程度為方針下,由關係省廳間為合作,擬定客觀之指標。此一指標,並非全國一致,應就地方之特性,設定符合安全基準及自動駕駛行駛環境條件,建構整體確保安全之體制。 防止過度信賴自駕系統:訂定安全基準,使日本事件最先端自動車技術擴及於世界,訂定包含自駕系統安全性、網路安全等自動駕駛安全性要件指針。 事故發生時之法律責任:自動駕駛其相關人為駕駛人、系統製造商、道路管理者等多方面,其法律責任相對複雜化。現在係以被害人救濟觀點,至等級4為止之自動駕駛,適用自動車損害賠償責任險(強制責任險)方式,但是民法、刑法及行政法等法律全體之對應,仍為今後之課題,必須為早期快速處理。為了強化民事責任求償權行使、明確刑事責任之因果關係、並實現車輛安全性確保、避免所有人過度負擔等,車輛行駛紀錄器之裝置義務化、事故原因究明機制等,關係機關應合作為制度檢討。   本大綱最後並提出,在自動駕駛技術快速發展下,就其發展實際狀況應為持續半年1次召開會議檢討檢討。

德國聯邦網絡管理局將於四月拍賣800 MHz等頻譜供4G使用

  德國聯邦網絡管理局(Bundesnetzagentur,BNetzA其職權類似目前我國之交通部)將於2010年4月12日展開針對800 MHz、1.8 GHz、2 GHz及2.6 GHz四大頻段中的部分頻譜拍賣,以供電信服務無線網路接取之用─特別是供4G技術使用;惟競標者僅有既存的四大電信營運商:Deutsche Telekom、Vodafone、KPN’s E-Plus(該公司成立一百分百控股公司獨立參與投標) 以及Telefónica O2,並無新進業者投標,明顯欠缺多樣性(diversity)。 局長Matthias Kurth表示,曾收到兩家業者有意參與競標的訊息,但其中一家營運商並未符合相關投標資格,而無法參與拍賣;另一家則已表明退出競標拍賣程序。   前揭四大頻段原屬軍方或傳統廣播電視業者所使用,屬歐盟所謂之數位紅利(digital dividend)之頻段已清空待價而沽。其中最受矚目者乃電波物理特性極佳的800 MHz頻段,特別適合於4G通訊技術之用,能在偏遠地區與都會遮蔽密度高之地區展現良好的覆蓋率及滲透率。   歐美地區皆已陸續進行廣電數位化(DSO)及數位紅利頻譜拍賣或制訂相關使用規則,以提升無線網路接取的便利性與普及性,強化國內資通訊產業競爭力。惟德國電信產業似乎與我國目前情況類似,為既有電信營運商寡占頻譜使用及相關服務市場,與美國700 MHz拍賣結果大異其趣,商業價值是否亦為德國頻譜釋出之重要考量,後續發展頗值得注意。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

韓國修訂《不正當競爭預防和營業秘密保護法》加強對於營業秘密侵權之監管

經查,韓國《不正當競爭預防和營業秘密保護法》(下稱UCPA)之修正案於2024年1月國會通過、2月公布,預計將於8月21日生效。旨在加強對於營業秘密侵權行為的法規監管與處罰力度,故本次修訂以營業秘密相關規定之修正為主,以其他修正(如商標、標誌、地理標示誤用、侵權或其他不公平競爭行為)為輔,本文摘要如下: 一、與營業秘密相關 (一)懲罰性賠償之加重:根據第14-2條第6項規定,針對「故意」營業秘密侵權行為,將懲罰性賠償從3倍上修到5倍。 (二)增加營業秘密侵權行為之監管與罰責:新增第9-8條規定,將「任何人在未經正當授權或超越授權範圍的情況下,不得損害、破壞或改變他人的營業秘密」納入規範,如有違反,將透過新增之第18條第3項規定課予最高10年監禁或最高5億韓元的罰款。 (三)加強對於企業(組織犯罪)之管制效力:基於修法前法人與自然人之罰款數額相同、企業的追訴時效短於自然人,造成難以抑止組織犯罪行為,故新增第19條規定,使企業罰款最高可處自然人罰款3倍,並新增第19-2條規定,將對企業的公訴時效延長至10年(與自然人之訴訟時效同)。 (四)新增沒收規定:依據修法前規定,即使透過UCPA提起訴訟,且侵權人承認侵權,但因為缺乏沒收規定(需要另外依據民事訴訟法才能對犯罪所得進行沒收),導致防止二次侵權損害之效果有限,故修法後透過第18-5條之規定納入可沒收特定營業秘密所得之規定。 二、其他修正 以下兩項修正之對象涉及第2條第1項第1款、第3條、第3-2條第1款(主要為商標、標誌、地理標示等誤用、侵權或其他不公平競爭行為),並不包括營業秘密(營業秘密第2條第1項第2款以下): (一)加強行政機關的職權:根據第8條規定,關於上述違規行為,相較修法前行政機關僅能提出「建議」(無強制力),修法後特別賦予智慧財產局(KIPO)可以「下令糾正」(시정을 명할 수 있다)之權利,即若未有正當理由依命令糾正者可依照第8條、第20條第1項第1、2款規定公布違反行為及糾正之建議或命令的內容,並對其進行罰款。 (二)法院查閱行政調查記錄的權力的擴張與限制:根據第14-7條規定賦予法院職權,即在法院在特定訴訟中認為必要時,可以要求相關行政單位向法院提出其依據第7條執行的調查紀錄(包括案件當事人的審問筆錄、速記紀錄及其他證據等),若相關紀錄涉及營業秘密,當事人或其代理人可向法院申請就查閱範圍、閱覽人數等進行限制。 綜上所述,可以發現此次修法除了加強法規的監管、處罰力度,顯示近年重視營業秘密爭議外,更特別修訂針對企業、法人等組織犯罪相關規定(如賠償金額的增加,甚至處罰力度大於自然人、訴訟時效的延長等),間接強調企業、法人等組織對於營業秘密侵權有內部管理與監督之責任,若參照資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」對於企業內部管理與監督如何落實之研究,係透過將管理措施歸納成(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)十個單元的PDCA管理循環,旨在提供企業作為機制建立之參考或自我檢視機制完善性的依據,期冀促進企業落實營業秘密管理。 本文同步刊登於TIPS網(https://www.tips.org.tw)

TOP