日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。
隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。
本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下:
1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。
2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。
日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
根據美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)於2016年之寬頻進步報告,美國現行之標準為業者必須提供下載速度至少達25Mbps與上傳速度至少達3Mbps之寬頻服務,相較於2010年所設立之標準─下載速度至少達4Mbps與上傳速度至少達1Mbps的寬頻服務,顯示出美國在寬頻部署上有明顯的進步。然而,目前仍有3400萬美國人民所使用之寬頻服務並未達到上述FCC所設立之標準(25Mbps/3Mbps)。 這份報告亦顯示,持續之數位落差(digital divide)導致40%生活在鄉村以及部落地區之人民所使用之寬頻服務並未達到上述FCC所設立之標準(25Mbps/3Mbps)。此外,E-rate計畫方案之持續推行,雖使許多學校之網路連線已有顯著改善,但仍有41%之學校未能符合FCC之短期目標,亦即這些學校之寬頻連線仍無法供應數位學習之應用。基於以上理由,2016年之寬頻進步報告總結:寬頻部署並未被適時並合理的(timely and reasonable)適用於全體美國人。 該份報告亦認為當今的通訊服務應以固網及行動寬頻服務(fixed and mobile broadband service)之方式提供,彼此的功能不同並能互補。然而,FCC尚未建立行動寬頻服務標準,因此,行動寬頻之部署尚未能反映在目前之評估。 依據1996年電信法第706條之規定,FCC必須每年報告先進通訊能力之部署,是否讓每位美國人民都能適時且合理的使用。國會所定義之「先進通訊能力」(advanced telecommunications capability)必須具高品質之能力,可讓使用者傳輸以及接收高品質之聲音、數據資料、照片以及影像服務。 此份報告重點總結如下: ●全面部署: 目前仍有3400萬美國人(約10%人口)無法接取固網下載速度至少達25Mbps與上傳速度至少達3Mbps之寬頻服務。然而,相較於去年之5500萬美國人(約17%人口)未能接取該寬頻服務,今年已有顯著的改善。 ●鄉村與城市間之數位落差仍待改善: 仍有39%之鄉村人口(2340萬人)以及41%之部落人口(160萬人)無法接取該寬頻服務(25Mbps/3Mbps)。相較於都市僅有4%之人無法接取該寬頻服務,發展上仍不平等。但相較於去年報告所示,有高達53%鄉村人口以及63%部落人口無法接取寬頻服務,城鄉發展不均之程度已有改善。 ●學校之寬頻速度: 全國僅有59%之學校達到FCC所設立之短期目標,亦即100Mbps可以供1000位學生使用,並有極少數之學校達到長程目標,即1Gbps可供1000位學生使用。 這份報告首次將衛星寬頻服務列入評估,FCC對於衛星寬頻服務適用與固網寬頻服務採用同樣之標準(25Mbps/3Mbps)。然而,在評估過程中,尚未有任合衛星寬頻服務符合FCC所採行之寬頻標準。
連結稅(link tax)連結稅(link tax)並非政府稅捐,而是網路業者以連結方式擷取新聞內容提供予他人,應向新聞業者協議取得授權,並支付適當費用的俗稱。針對網路業者擷取使用或彙整他人的新聞(例如Google News),導致發布該新聞之新聞業者實際獲得的點擊率與網路流量減少的情形,為了平衡新聞業者與網路業者間的利益,歐盟於2019年通過施行的歐盟數位單一市場著作權指令(The Directive on Copyright in the Digital Single Market)中,訂定網路業者應向新聞業者取得著作使用之授權協議,包含網路業者應與新聞業者分享一定比例之收益。 本條文於草案階段即備受爭議,草案條文(第11條)甚至包含使用超連結(hyperlink)的行為在內,而引發網路業者與使用者的反彈,並戲稱支付使用超連結的費用為繳交超連結稅。而最後通過的條文(第15條),則排除了非商業使用的個人、使用超連結或是僅單詞或簡短摘錄的情形,並將新聞業者的權利限於發表後的兩年以內,且不溯及適用指令施行前發表的新聞。 德國跟西班牙分別於2013年及2014年立法賦予新聞業者類似的權利,但結果顯示新聞業者對於網路業者的依賴,可能還遠大於網路業者擷取新聞業者內容所獲得的利益。法國於2019年7月完成將歐盟著作權指令內國法化,Google也因此調整其擷取政策,除非新聞業者主動完成對擷取內容範圍限制與授權的設定,Google將刪除全部擷取內容;連結稅能否保障新聞業者對其所發布新聞的相關權利,並平衡新聞業者與網路業者間的利益,仍有待觀察。
美國FDA發布保密證書指引草案,可防止研究人員被迫揭露研究參與者可識別個人之敏感性資料美國FDA(Food and Drug Administration)於2019年11月22日發布「保密證書(Certificates of Confidentiality, CoC)」指引草案。保密證書之目的在於防止研究人員在任何聯邦、州或地方之民事、刑事、行政、立法或其他程序中被迫揭露有關研究參與者可識別個人之敏感性資料,以保護研究參與者之隱私。保密證書主要可分為兩種,對於由聯邦所資助,從事於生物醫學研究、行為研究,臨床研究或其他研究,於研究時會收集可識別個人之敏感性資料之研究人員而言,保密證書會依法核發予該研究人員,稱為法定型保密證書(mandatory CoC);而對於從事非由聯邦所資助之研究的研究人員而言,原則上保密證書不會主動核發予該研究人員,惟當研究涉及FDA管轄之產品時,可由FDA自行裁量而核發保密證書,稱為裁量型保密證書(discretionary CoC),本指引草案旨在提供裁量型保密證書之相關規範。 FDA建議裁量型保密證書之申辦者先自問以下四個問題,且所有問題之答案應該皆為肯定:(1)申辦者所參與之人體研究是否收集可識別個人之敏感性資料?(2)申辦者是否為該臨床研究之負責人?(3)申辦裁量型保密證書之人體研究是否涉及受FDA管轄之產品的使用或研究?(4)申辦者之研究措施是否足以保護可識別個人之敏感性資料之機密性? 於FDA完成審查後,將向申辦人傳送電子回覆信件,表明是否核准裁量型保密證書。若結果為核准,則該電子回覆信件即可作為保密證書。該保密證書之接受者應執行法律所規定以及FDA於電子回覆信件中所要求之保證事項,以保護人體研究參與者之隱私。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)