日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢

日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。

本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下:

1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。

2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。

3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。

本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。

相關連結
你可能會想參加
※ 日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9267&no=55&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
加拿大在商展中展現數位內容產業之實力

加拿大領導廠商 ICTV ,在 NCTA 國家商展 (NCTA National Show) 中,帶來了加拿大在互動電視內容方面的最新科技展現。 ICTV 是著名產品 HeadendWare 的製造商,此產品是在寬頻產業中傳輸互動電視內容最強大的平台。此一平台目前已取得多家加拿大廠商的協力合約,將共同在此平台上發展遊戲、娛樂與資訊內容等將關服務。   ICTV 解決方案部門的主管表示,加拿大確實是在互動數位內容方面的技術領先國家,並且正持續吸引更多的廠商與其合作。確實,加拿大的科技產業在全球屬領先地位,過去國內廠商對於新科技的注意力,大都放在美國、歐洲及日韓等國,或許,對加拿大進行更深入的關心與瞭解,可以挖掘到更多的報寶藏。

新加坡以親商政策及稅務優惠等措施提升新創生態系競爭力位居亞洲第一

全球創新研究平台StartupBlink 於2025年5月20日發布《2025全球新創生態系指數》(Global Startup Ecosystem Index 2025),分析與評比全球118個國家及1,473座城市新創生態系之數量、品質與商業環境。其中新加坡自2021年起全球排名不斷攀升,於2022年起佔據亞洲第1之寶座,截至2025年更躍升全球第4,僅位居美國、英國及以色列之後。 新加坡新創生態系之競爭力優勢如下: 1、穩定金融環境:企業與銀行具備充足流動資本與健康償債能力。 2、親商環境制度:新加坡政府以全球創業者計畫(Global Founder Programme, GFP),提供便利簽證、產業人脈引介等多方面支持,吸引經驗豐富之創辦人至新加坡創業。 3、優惠稅務措施:因應全球最低稅負制度,增訂「可退還投資抵減」(Refundable Investment Credit, RIC),針對促進新加坡經濟或提升新興產業成長為重大投資之公司,可扣抵企業應納之稅負。 4、推動產學合作:新加坡學術界除了積極培育高素質人才進行研發外,亦提供專業知識諮詢、產業交流機會,及海外業務拓展之協助,積極推動產學合作,使校園成為創業之溫床。 2025年全球新創生態系面臨兩大衝擊,即AI技術的崛起與迅速更跌,與複雜多變的地緣政治,促使政府須在詭譎的全球局勢中,因應情勢調整國家發展策略,推動新創持續成長。而新加坡政府及學術研究機關均致力推動新創政策,加上充足的基礎設施,吸引大量國際人才與投資,進而促使該國新創生態系之蓬勃發展。

Sir Tim Berners-Lee呼籲,開放政府資料(Open Government Data)的持續發展需要政府兌現其承諾

  開放政府資料(Open Government Data)從2009年美國發起開放政府倡議開始,在全球颳起一陣的旋風,主張公民享有政府資料的權利。這開放資料的浪潮,在2013年由G8工業國簽署開放政府資料憲章(Open Data Charter),約定將以開放為預設(open by default)推動開放政府資料,承諾致力於開放公部門資料、以不收取費用,並採用可再利用格式提供。隨後,G20工業經濟體於2014年跟進,以推動開放政府資料做為反貪腐的利器;聯合國也同時認知,現時亟需資料革命(Data Revolution)以做為實現全球發展的目標。   然而,依據網際網路基金會(World Wide Web Foundation)繼2013年所發布的Open Data Barometer(第一版),於2015年1月再度發布Open Data Barometer(第二版),以開放政府資料的整備、落實、與影響程度三大要素,來檢視與評估86個國家於2014年間對於開政府資料推動的狀況,結果發現仍有90%的資料還是閉鎖在政府機關。   從在資料內容方面來看,僅8%的國家採用開放格式與開放授權釋出核心資料,例如政府預算支出、公共服務執行資料集等,大部分國家仍未真正釋出多數核心資料集,不然就是雖已釋出但卻很難使用;更不用提用得以打擊貪腐和促進公平競爭的資料,如公司註冊、政府契約、土地所有權資料等。在法制與政策規範面,僅17%的國家具有公民對於資料主張權利(the right to information)的相關法制,大多數國家尚未以法律或政策做為課與機關主動積極(proactive)釋出資料的義務(mandated)、實現公民對於資料主張權利的依據,而且多數國家在開放政府資料的規範與程序上,對於個資隱私的保護仍然不足,或仍處於非常不確定的狀態。   為確保資料革命達成通透度和政府的性能,Open Data Barometer研究報告提出下列關鍵步驟,提供各國政府參採: ‧由政府高層承諾將主動積極釋出公部門資料,尤其是得促進問責(accountability)的關鍵資料 ‧持續投入支援與提供培訓,使多數公民社會與企業理解與有效率地使用資料 ‧因應各國需求開發開放資料的工具和方法,例如於在識字率較低的國家,採用視覺化方式呈現資料 ‧支持地方層級開放資料的倡議,以補強國家層級開放政府資料的方案 ‧進行法規調適,以確保公民對於資料主張權利,並於開放資料倡議中加強對於個資隱私保護的基礎   網路發明者與網路基金會創始人Sir Tim Berners-Lee依Open Data Barometer的調查結果,批評政府仍持續迴避開放可用於增強問責與信任的資料,並強調開放資料的強大力量,在於資訊的權利還給公民。 備註: Open Data Barometer群組排名如下: 已開發國家 新興市場國家 開發中國家 1)英國 21)巴西 36)印尼 2)美國 22)墨西哥 39)印度 3)瑞典 33)匈牙利 46)迦納 4)紐西蘭 33)秘魯 46)盧安達 4)法國 36)阿根廷 49)肯亞

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP