日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢

日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。

本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下:

1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。

2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。

3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。

本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。

相關連結
你可能會想參加
※ 日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9267&no=55&tp=1 (最後瀏覽日:2025/12/14)
引註此篇文章
你可能還會想看
FCC將關閉北卡地區之類比無線電視

  完成700MHz頻段之頻譜拍賣後,美國通訊傳播委員會(Federal Communications Commission, FCC)亦開始積極著手準備頻譜回收工作,以期能夠順利在2009年2月17日全面關閉類比無線電視訊號,完成無線電視數位化及頻譜回收。   為能提早發現關閉類比無線電視訊號可能帶來之問題或影響,FCC於2008年5月8日宣布將在2008年9月8日中午12時正式關閉北卡威明頓(Wilmington)地區之類比無線電視訊號。在此次關閉類比無線電視訊號過程中,FCC將和無線電視、有線電視等相關業者及協會密切合作,以解決過程中發生的任何問題。FCC之所以選擇威明頓地區率先關閉無線類比電視訊號,主要原因之一在於威明頓地區的四大電視網均已完成數位化工作,並自願提前關閉類比無線電視訊號。   針對於FCC此一測試計畫,美國國家廣播電視協會(National Association of Broadcasters, NAB)亦發表聲明表示支持與配合。除此之外,NAB同時表示此次試驗的結果必須被審慎檢驗,並用於決定如何關閉全國的類比無線電視訊號。NAB希望有關單位透過此次試驗之結果,決定明年全面關閉類比無線電視訊號時,聯邦、州及地方政府應如何合作、數位機上盒供應、有線電視及衛星電視業者之配合等相關問題。

義大利要求網路服務提供業者必須查驗客戶的身分證明文件

  義大利政府最近新訂定一項法律規定:網路服務的提供業者,也就是所謂的網路咖啡店的業者,必須確認客戶的身分。   自從七月份在倫敦所發生的恐怖炸彈攻擊事件後,義大利政府依據反恐保護的法令規定,要求網路咖啡店這類的營業者必須要在當地的警察局註冊,同時保存使用者身分證明文件的影本。許多的網路服務提供業者抱怨,這樣的要求不但增加了他們的工作成本,也影響到他們的生意。網路咖啡業者指出,大部份上網咖的客人都是外國人,一般而言,這些使用者不是沒有隨身攜帶他們的護照證明文件,要不然就是不願意主動的配合查驗身分。事實上,多數的使用者都只提供其姓名,而並沒有提供護照文件的號碼,至於照片影本的提供更是少數中的少數。   反對者指出,這樣的強制法律規定是很難執行的。除了擾民外,驗證身分的措施僅對於害怕被查驗身分的非法移民有效。大部分的人不是不願意去註冊證明文件,要不然就是提供假的證照資料。法律所訴諸與企求的保護目的根本無法達成。   義大利是唯一要求網路服務提供業者去查驗客戶身分的歐盟會員國家。不過,非歐盟會員國的瑞士也有相關的規定要求網路咖啡店的使用者必須出示身分證明文件。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

新加坡個人資料保護委員會2017年7月發布資料共享指引

  新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2017年7月27日發布資料共享指引(GUIDE TO DATA SHARING),該指引協助組織遵守新加坡2012年個人資料保護法(Personal Data Protection Act 2012, PDPA),並提供組織內部和組織之間的個資共享指引,例如得否共享個資,與如何應用,以確保符合PDPA共享個資之適當方法;並得將特定資料共享而豁免PDPA規範。該指引共分為三部分,並有附件A、B。   指引的第一部分為引言,關於資料共享區分為三種類型探討: 在同一組織內或關係組織間共享 與資料中介機構共享(依契約約定資料留存與保護義務) 與一個或多個組織共享(在不同私部門間、公私部門間)   共享包含向一或多組織為利用、揭露或後續蒐集個資;而在組織內共享個人已同意利用之個資,組織還應制定內部政策,防止濫用,並避免未經授權的處理、利用與揭露;還應考慮共享的預期目的,以及共享可能產生的潛在利益與風險。若組織在未經同意的情況下共享個資,必須確保根據PDPA的相關例外或豁免之規定。   指引的第二部分則在決定共享資料前應考慮的因素: 共享目的為何?是否適當? 共享的個資類型為何?是否與預期目的相關? 在該預期目的下,匿名資料是否足以代替個資? 共享是否需要得同意?是否有例外? 即使無須同意,是否需通知共享目的? 共享是否涉及個資跨境傳輸?   上述因素還能更細緻對應到附件A所列應思考問題,附件B則有相關作業流程範例。   指引的第三部分,具體說明如何共享個資,與資料共享應注意規範,並提供具體案例參考,值得作為組織遵守新加坡個人資料保護規範與資料共享之參考依據。

TOP