日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。
本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下:
1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。
2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。
3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。
本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
金融憑證增至22家 網路報稅人次可望締新猷又到了報稅的季節。依據財政部統計,台灣使用網路報稅人口年年成長,在2002年約有35萬人使用網路報稅,2003年成長超過1倍,有75萬人口使用網路報稅,而去年則有102萬人口使用網路報稅,較前年成長36%。 使用金融憑證網路報稅可簡化繁瑣報稅程序,去年只有8家金融機構提供報稅服務,今年則提高至22家,預估今年透過網路報稅的納稅人,可望衝破歷年人數。包括元富證、元京証、台証證、日盛金控、國泰、新光人壽等22家金融機構,己於3月17日經財政部審核通過,可使用台灣網路認證公司之網路銀行、網路下單及網路保險憑證用於94年個人綜合所得稅網路結算申報,透過申報軟體,使用「金融憑證」即可查詢下載93年度「夫、妻、未成年子女」之戶籍資料、扣 (免)繳及股利憑單所得資料,逐筆確認修正無誤,由電腦自動試算稅額後,傳輸申報資料,並自行列印收執聯保存,完成報稅手續。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
Facebook粉絲專頁管理者是否負有保護用戶個資隱私之控制者(Data Controller)責任2018年6月5日歐盟法院針對Unabhängiges Landeszentrum für Datenschutz Schleswig-Holstein v Wirtschaftsakademie Schleswig-Holstein GmbH訴訟進行先訴裁定,擴大解釋《資料保護指令》(Directive 95/46/EC)之「資料控制者」範圍,認為Facebook和粉絲專頁管理者皆負有保護訪客資料安全的責任。由於「資料控制者」定義在《資料保護指令》與《一般資料保護規則》(GDPR)相同,因此裁定將影響未來使用社群媒體服務和平台頁面的個資保護責任。 本案起因德國Schleswig-Holstein邦獨立資料保護中心要求 Wirtschaftsakademie教育服務公司在Facebook經營之粉絲專頁必須停用,其理由認為Facebook和Wirtschaftsakademie進行之Cookie資料蒐集、處理活動並未通知粉絲成員且因此從中獲利,然Wirtschaftsakademie認為並未委託Facebook處理粉絲成員個資,當局應直接對Facebook要求禁止蒐集處理。歐盟法院認為Wirtschaftsakademie使用Facebook所提供之平台從中受益,即使未實際擁有任何個資,仍被視為負共同責任(jointly responsible)的資料控制者,應依具體個案評估每個資料控制者責任程度。 在原《資料保護指令》並未有「資料控制者需負共同責任」之規定,本案擴大解釋資料控制者範圍,對照現行GDPR屬於第26條「共同控制者」之規範主體,然而本案將資料控制者擴張到未實際處理資料之粉絲專頁管理者,是否過於嚴格?且未來如何劃分責任與義務,皆有待觀察。