新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施:

(1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。

(2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。

(3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。

(4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。

(5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。

CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

相關連結
※ 新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=9270&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
新加坡正式推動金融服務與市場法案,加強對新型態金融服務產業之監管力度

  新加坡為全球性商務金融重鎮,影響全球金融市場甚鉅,其法制變革具有指標性意義,近年來新加坡政府針對電子支付、數位代幣領域加強監管,於2017年新加坡金管局(Monetary Authority of Singapore, MAS)發布「數位代幣發行指引」;2019年通過「支付服務法」(Payment Service Act),規定從事付款業務之單位,皆須先取得許可執照。新加坡國會更於2022年4月5日三讀通過「金融服務與市場法」 (Financial Services and Markets Act),旨在促使金管局得更有效率因應、監管當今變化快速、逐漸數位化之金融市場。   該法規主要著眼於金管局對於金融業中數位代幣及加密貨幣業者之控管,並使合法之加密貨幣業者更具競爭優勢。首先明定受規範之相關金融機構或特定個人,若其具違法情事,金管局得對其發布禁制令(Prohibition Order);對於得受禁制令之主體及其涵蓋範圍,相較於過去其他法案更為擴張。   在主體方面納入「數位代幣服務供應商」(Digital Token Service Providers),以防止洗錢、進行資助恐怖主義之活動或其他金融犯罪行為,禁制令可視違法者之情節嚴重程度,而區分禁制期間為特定時間或至永久。此外,金管局亦得於特定情形下,評估要求相關金融機構進行強制股份轉讓或重組。   綜上,可以知悉新加坡當局有意對新興型態之金融模式進行有效監管,雖可能被認定與過去寬鬆、開放市場之控管機制背道而馳,惟面臨如此多元且發展快速之金融市場,著實有不斷將法規進行修正,以靈活配合當下金融趨勢及發展之必要性。

回歸修理/再製造判準?談日本最高裁事件判決

英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形

  英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。   ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。   使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。   ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

TOP