國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。
CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。
LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。
依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定:
1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。
2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。
然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。
2015年7月16日歐洲法院(European Court of Justice)作對華為技術有限公司(以下簡稱華為公司)訴中興通訊股份有限公司(以下簡稱中興公司)侵權案作出判決,在判決中說明了向標準制定組織承諾以公平、合理及非歧視的原則(Fair, Reasonable, Non-discriminatory,以下統稱FRAND原則)對第三人授權之標準必要專利權人,在何情況下應依據《歐洲聯盟運作公約(Treaty on the Functioning of the European Union,以下簡稱TFEU)》第102條禁止濫用優勢地位的歐盟法一般規定,不得向法院聲請對被控侵害標準必要專利之人發出禁制令(injunction)。 歐洲法院認為,當標準必要專利權人承諾依據FRAND原則授權時,其已創造第三方對標準必要專利權人將以授權獲利,而非透過行使其排他權利而獲利之合理期待。因此標準必要專利權人必須以合理方法(包括通知被控侵權人侵害事實及表達願依FRAND原則與其達成授權契約之意願)與被控侵權方尋求達成授權契約,否則則構成優勢地位濫用。 至於被控侵權方雖無義務接受標準必要專利權人的要約以作為免除禁制令的條件,但仍應給予真誠並依據商業慣例的回應,包括(1)不拖延回覆;(2)即時提出新的書面要約;(3)被控侵權人正在使用標準必要專利且無法達成授權契約時,必須就其過去使用該專利之數量等依據商業慣例提供適當擔保;(4)雙方不拖延地接受由第三方來認定授權金額;(5)在進行授權協商時,被控侵權人不能挑戰標準必要專利的有效性、必要性或保留其後續相關權利。
中國大陸國務院揭示支持科技成果轉化政策措施中國大陸國務院於2016/年2月18日國務院常務會議中確認支持科技成果移轉轉化政策措施及促進科技與經濟深度融合。 依據該會議決議,為提升創新主體的積極性,將鼓勵國家設立之研究開發機構、高等院校以轉讓、授權或作價投資等方式,向企業或其他組織轉移科技成果,並適用以下政策: (1) 自主決定轉移其持有的科技成果,原則上不需審批或備案。鼓勵優先向中小微企業轉移成果。支援設立專業化技術轉移機構。(惟在境外實施方面,仍須依《科學技術進步法》第21條及《中國大陸國家科技重大專項知識產權管理暫行規定》第33條進行審批。) (2) 成果轉移收入全部留歸單位,主要用於獎勵科技人員和開展科研、成果轉化等工作。科技成果轉移和交易價格要按程式公示。 (3) 通過轉讓或許可取得的淨收入及作價投資獲得的股份或出資比例,應提取不低於50%用於獎勵,對研發和成果轉化作出主要貢獻人員的獎勵份額不低於獎勵總額的50%。科技人員在成果轉化中開展技術開發與服務等活動,可依法依規獲得獎勵。在履行盡職義務前提下,免除事業單位領導在科技成果定價中因成果轉化後續價值變化產生的決策責任。 (4) 科技人員可以按照規定在完成本職工作的情況下到企業兼職從事科技成果轉化活動,或在3年內保留人事關係離崗創業,開展成果轉化。離崗創業期間,科技人員承擔的國家科技計畫和基金專案原則上不得中止。鼓勵企業採取股權獎勵、股票期權、專案收益分紅等方式,激勵科技人員實施成果轉化。 (5) 將科技成果轉化情況納入研發機構和高校績效考評,加快向全國推廣國家自主創新示範區試點稅收優惠政策,探索完善支援單位和個人科技成果轉化的財稅措施。更好發揮科技創新對穩增長、調結構、惠民生的支撐和促進作用。
韓國人工智慧風險管理趨勢研析韓國人工智慧風險管理趨勢研析 資訊工業策進會科技法律研究所 2020年6月25日 人工智慧技術正不斷地突飛猛進,後更因深度學習應用帶來令人難以置信的進步,迅速成為眾多產業轉型的重要推手。然而,當眾人專注於追求人工智慧的逐利時,也隱然意識到人工智慧與現實世界的互動,似已超越人類認知能力,或依當下技術知識經驗仍難加以掌握。以自駕車為例,其利用感測器感知外界進行影像辨識、理解預測進而做出決策的整體流程上,不論是在路人、車輛等圖像辨識、現場就路人及車輛行動之預測,乃至後端根據前階段路人、車輛行動預測與現在位置判斷最佳路徑的過程,處處是不可測的風險。申言之,從辨識正確率、現場狀況理解度至演算法決策來說,吾人所得掌控者有限。主因在於人工智慧的複雜與靈活性特色,實難通過統一概念加以界定。次者是人工智慧的自動化決策本身,事實上難以被確實地預見。甚至,就人工智慧可控性上,亦充斥各類不確定要素,特別是訓練資料偏差、又或設計者主觀意識之偏頗都可能造成預想之外的結果。 截至目前為止,人工智慧應用已然帶來已引發諸多風險議題,包含於開發、設計及製造端所論及之風險議題涵蓋歧視與偏見,如資料偏差、樣本資料結構性不平等[1]致使機器學習或有偏誤,進而影響判斷,產出具有歧視或偏見之結果[2];個人資料及隱私保護上,則係因人工智慧訓練對資料具有大量需求,涉及個人資料部分,將面臨蒐集(踐行告知程序)、處理和利用(於當事人同意之範圍內處理、利用)是否善盡保護義務與合乎法規要求;演算法黑箱帶來不透明的決策,難以預測與檢驗決策流程、判準是否有誤[3]。就此,考慮到人工智慧之重要性與風險,或有必要立基於風險預防理念進行相關風險控管,甚或以風險責任分擔角度,討論相關權責分配,以應對未來可能衍生的危害或重大風險。 人工智慧風險控管之法律基礎無法悖於倫理道德基礎。觀諸國際間討論,韓國早在2007年即已倡議機器人道德理念,並在2008年起接連有相關立法舉措。本文將以之為中心,探究其人工智慧在風險控管之相關立法政策措施,盼可從韓國做法中反思我國推行人工智慧風險管理之方向。 壹、事件摘要 一、韓國智慧機器人相關法制措施 (一)《智慧機器人發展和促進法》風險管控介紹 2008年9月韓國《智慧機器人發展和促進法》(지능형 로봇 개발 및 보급 촉진법)正式生效。該法旨在鋪設智慧機器人產業發展之法律基礎,包含在法律中嘗試引入智慧機器人定義(指通過識別外部環境並判斷狀況後自動運行之機器設備,包含機器設備運行所必要軟體),以此作為後續促進產業發展、規劃機器人責任歸屬或保險等討論之開展基礎;另外也以促進產業發展觀點,訂定產品安全開發與布建之支持法源依據;挹注國家科研能量確保技術穩定;建置智慧機器人產業分類系統,依此做為機器人產業統計基礎,為國家在機器人管理及政策提供相關數據。 其中,特別的是除了促進性規範外,亦首度於法律提出機器人倫理道德的概念,賦予主管機關訂定與「機器人倫理道德憲章」(로봇윤리헌장)相關內容之義務。 所謂「機器人倫理道德憲章」,係指針對智慧機器人功能及其智慧化發展,規範製造和使用人員之指導方針,以防杜危險發生並避免機器人不利於人類生活品質。換言之,機器人倫理道德憲章可認為是針對智慧機器人開發、製造、使用上的準則,盼可用以防止因智慧機器人功能而衍生之社會損害。就此,韓國工商部曾擬定《機器人倫理道德憲章草案》,可參考如下: 第一條(目標)機器人倫理道德憲章目標係為人類和機器人共存共榮,並確認以人類爲中心的倫理規範。 第二條(人與機器人的共同原則)人類和機器人應當維護相互之間生命的尊嚴、資訊和工程倫理。 第三條(人類倫理)人類在製造和使用機器人時,必須使用良好的方法判斷和決定。 第四條(機器人倫理)機器人是順從人類命令的朋友或是協助者、夥伴,不得傷害人類。 第五條(製造商倫理規範)機器人製造商有義務製造維護人類尊嚴之機器人,同時,必須承擔回收機器人、資訊保護義務。 第六條(使用者倫理)機器人使用者應當尊重機器人爲人類的朋友,禁止非法改造和濫用機器人。 第七條(實施的承諾)政府和地方政府應實施有效措施,以體現《憲章》的精神[4]。 觀察《智慧機器人發展和促進法》內涵,富有藉重法律效果與效能引領智慧機器人產業發展之精神,企圖形成政府政策借助立法促成經濟層面活動向上發展。然而,隨智慧機器人技術逐漸深入社會,韓國旋即意識到人工智慧在權益維護、風險管控上仍有進一步補強之必要,進而提出《機器人基本法草案》,並開展韓國在機器人倫理道德、歸責原則之相關討論,以順應社會整體的變革。 (二)《機器人基本法草案》 如前所述,意識到人工智慧發展已然滲入日常生活,有必要在機器人普及化的社會接受過程中,應對各類問題預先防範。韓國國會議員遂於2017年7月19日提出《機器人基本法草案》(로봇기본법)以反映機器人發展趨勢與問題。 《機器人基本法草案》主要目的是為機器人融入社會過程中的政策方向、原則進行引導,以有助於機器人產業健全發展。是以,該法在風險控管部分,通過二類做法予以調控,一是建立倫理道德準則之原則、二是嘗試提出歸責原則以釐清相關應用所生之爭議。 一者,藉道德倫理界線之提出使產業更為允當運用人工智慧。借用產品生命週期之概念,分就設計、製造以及使用者責任三階段規範。在設計階段,著重於產品內部構造、軟體介面設計的安全性,另就不侵犯人權及社會利益上,強調預先從設計確保產品永續性、倫理性及使用上的安全性;在製造階段,則從遵法性、說明義務及產品維護修繕責任等,揭示製造商在產品製造、銷售應行之事項;最後,則從使用者角度,以應用階段各項自律、他律規範,明示遵法義務與道德倫理原則,並特別指明宜避免過度成癮。 次者,在責任分配與歸屬上,於現行法令無以適用情況下,允許受損害者得向機器人之銷售者或提供者求償。然而,為免製造商或銷售者過度承擔賠償責任之風險,亦設置免責條款,規定當產品因缺陷致使損害發生,而該缺陷係以當時技術水準所無法發現之情況,或是該缺陷是製造商遵守當時機器人法令所規定標準所肇致,則將免除製造商之損害賠償責任。 綜合前述,《機器人基本法草案》在倫理道德及責任分配歸屬的風險管控上,提出諸多可資參考之方式,然而在基本法審議過程中,韓國政府認為雖有必要管制風險,卻不宜過早以立法手段介入遏止創新,而未能通過韓國國民議會。 (三)韓國人工智慧國家戰略 雖然《機器人基本法草案》未能立法通過,然而韓國相關立法脈絡已展現除關注於促進智慧機器人產業發展外,在倫理道德、責任上的風險調控亦不可偏廢態勢,且從智慧機器人進一步聚焦於人工智慧。 2019年12月第53屆總理會議(국무회의)[5],韓國擬定涵蓋科學資通訊技術部在內所有部會共同推動之「人工智慧國家戰略」(AI 국가전략)作為橫跨經濟和社會的創新專案[6],以攻守兼備方式發展人工智慧。分從技術、產業、社會三方面著手,為韓國發展人工智慧半導體產業取得先機,進而拔得在相關領域的頭籌;次者,完備先進資通訊技術基礎設施,借力人工智慧積極轉型為新世代數位政府;其三,從教育扎根,建設人工智慧教育體系以培植相關領域專業人才;第四,秉持「以人為本」精神發展人工智慧,建立人工智慧倫理原則、擴張就業安全網保障勞工,使人工智慧所產生之效益可散發至社會各個角落。預計通過該戰略,將可在2030年壯大韓國之數位競爭力,使人工智慧經濟產值增長至4550000億韓圜(約3800億美元),提升國民生活品質[7]。 整體而言,該戰略建立基於技術的立法、以人為本的道德以及改善整體社會法律體系三者為核心。基於技術的立法,如《信用資訊法》修訂,允許假名化資料利用,以鬆綁人工智慧資料應用需求,並平衡隱私保障;以人為本的道德,像是參考國際間道德倫理之標準,推行「人工智慧道德標準行動計畫」(AI 윤리기준 및 실천방안 마련),加速研擬建立在安全、責任或是擔保上的規範[8];改善整體社會法律體系,包含修正《國民就業援助法》擴大就業安全網,透過保險、教育、就業支援等方式協助受人工智慧衝擊影響之勞工、《就業政策基本法》中研擬為人工智慧業務建立相應人才教育。三者之推動,除帶動人工智慧產業蓬勃發展外,也兼顧社會層面道德、權益保障。 貳、重點說明 一、以剛性立法手段推進產業發展 觀察韓國,其人工智慧發展態度係以鼓勵為重。主因在於對企業來說,採用新興科技應用或可能囿於法遵成本、研發投資耗費過鉅、相關領域人才稀缺等多重因素而有所疑慮。有鑑於前開問題,韓國以正面態度,在風險控管措施上,嘗試藉由法規手段解消人工智慧發展所面臨之問題,即在賦予政府確實制訂與推進人工智慧發展政策責任,使業者可預期政府態度;次者,設置法律作為行政機關提供產品安全開發與布建支援依據,確保科研能量技術的穩定;再者,藉由智慧機器人分類系統建立產業管理與統計基礎,俾利後續依統計數據進行決策。 至於權益保障、風險如何評價及規範,雖有論者倡議另制定《機器人基本法草案》彌補《智慧機器人發展和促進法》於法律內部體系權利價值詮釋上的缺陷,然經立法成本與當時技術成熟度之衡量,並未過早規範技術之發展。 二、借軟性規範措施型塑兼容並顧之環境 另方面,觀察韓國在面對人工智慧機器人時的應對方式,發現在促進發展上,韓國無不餘力地大力採用剛性立法手段,以鋪設技術、投資所需之基礎建設及支援。而就尚難定論之技術風險管控,像是倫理道德、歸責原則調控等,考量技術尚未臻成熟,實難以剛性立法方式加之管理,而有以政策方式先試先行之傾向,形塑具有包容彈性之環境,鼓勵人工智慧機器人產業之投入,並依此作為後續法規調適之基礎。 鑒於人工智慧機器人所涉領域之多元,誠然有必要以宏觀角度全盤檢視與調適相應之規範及措施。故而,韓國2019年底提出富含權益保障與經濟逐利精神之「人工智慧國家戰略」,並鏈結不同部會共司建立彈性包容人工智慧機器人產業之環境。 參、事件評析 綜觀上述,韓國面對人工智慧及機器人,對內,以剛性立法手段,先行鋪設智慧機器人產業發展之基礎,包含界定智慧機器人範圍、賦予行政機關訂定倫理規範等一定義務、設置行政支持法源依據、以分類系統規劃作為數據統計基礎進行決策等,以拉抬、激勵企業投入研發,促成經濟層面活動之擴散與發酵;對外,以軟性規範宣示韓國政府發展智慧機器人產業態度、吸引國際間產學研能量挹注,並同步促成內部社會法體制之調整,不難看出韓國政府的企圖與決心,且整體上已約略有鼓勵、促進逐漸轉變為管理層面意味。 在我國方面,亦已意識到人工智慧風險管理之重要性,立法委員並在2019年5月倡議《人工智慧發展基本法草案》希望以制定基本法之方式,從研究、開發乃至整合等,厚植我國人工智慧實力,並嘗試建立人工智慧開發準則與倫理原則。韓國前述有關人工智慧之規範作法,或許可茲我國借鏡,就促進人工智慧技術經濟層面效益之面向,可由政府擬定具實質效力之法規範推動之;就現尚難明確定位之倫理準則及風險控管,採用軟性規範方式,先行以具包容性之政策、指引等作法試行,以待日後技術臻至成熟穩定,再行考量轉化為立法管理之必要。 [1] Crawford, K. et al. The AI Now Report: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term, AI Now, 2016, https://ainowinstitute.org/AI_Now_2016_Report.pdf (last visited May. 22, 2019) [2] Cassie Kozyrkov, What is AI bias?, https://towardsdatascience.com/what-is-ai-bias-6606a3bcb814 (last visited May. 22, 2019) [3] BBC, The real risks of Artificial Intelligence, http://www.bbc.com/future/story/20161110-the-real-risks-of-artificial-intelligence(last visited May. 22, 2019). [4] 김성원 선임,지능정보사회의 도래와 법·윤리적 과제- 인공지능기술의 발달을 중심으로 -, National Industry Promotion Agency(2017/11/15), p10. [5] 總理會議係韓國特有的系統,主要由總統、總理以及15位至30位不等之國務院成員共同組成,成員包含各部會之首長。主要職能是做為國家決策的機構,並協調政策或行政事務。詳細資料可參見:http://theme.archives.go.kr/next/cabinet/viewIntro.do。 [6] 〈정부, AI 국가전략 발표…”AI 반도체 세계 1위 목표”〉,Bloter,2019/12/17,http://www.bloter.net/archives/364678 (最後瀏覽日:2020/2/1)。 [7] 〈인공지능(AI) 국가전략 발표〉,과학기술정보통신부,2019/12/17,https://www.msit.go.kr/web/msipContents/contentsView.do?cateId=_policycom2&artId=2405727 (最後瀏覽日:2020/2/1)。 [8]〈인공지능 국가전략〉,관계부처 합동,2019/12,頁36-38。
全球Open Data成功及挑戰之關鍵報告根據全球資訊網基金會(World Wide Web Foundation)及英國開放資料協會(Open Data Institute)指出,全球77個國家正進行Open Data政府開放資料政策,但實際運作上,各國政府提供公眾近用之資料集佔不到全世界政府資料的10%,呈現各國Open Data政策實行還有很大進步空間。 全球資訊網基金會與英國開放資料協會所合作的網絡平台-政府開放資料研究網絡(Open Data Research Network),針對各國政府開放資料執行狀況進行評比並提出Open Data Barometer研究報告。此報告指出,英國政府開放資料執行及成效排名第一,其次排名陸續為美國、瑞典、紐西蘭、丹麥、挪威。除此之外,專以倡導開放知識、資料、內容的國際非政府組織,開放知識基金會(Open Knowledge Foundation),則提出基於Open Data可用性及近用性進行70個國家的排名,英國仍是第一名,其次為美國、丹麥、挪威、荷蘭。從上述兩項研究報告中,英國在Open Data政策落實的成效受到高度肯定,而歐美地區仍在Open Data政策實行上領先世界其他地區的國家。 Open Data Barometer研究報告指出,目前各國政府傾向不提供具潛在爭議性的政府資料,但此類資料往往具再利用價值,例如政府財政預算及交易資料、公司登記、土地登記等相關資料。全球資訊網創始人Berners Lee表示,政府及企業不應考量提供資料集而無法收取費用,或有意掩蓋政治敏感之資料來保護政治利益,而對於公布會造就人民生活的重大進步但具爭議性之資料集,感到卻步。 目前多數國家開放資料之機器可讀性資料與資料集之免費授權(Open License)皆少於7%,報告中說明全球資料集實際可用性仍偏低,亦發現各國提供資料之收費不僅沒有效率,資料再利用授權關係也不明確,使得企業及使用者處在法律不確定之風險中。 全球面對開放資料的進展雖已有初步成效,但成功經驗仍集中在歐美國家,世界上其他國家在開放資料的可用性及近用性,仍與歐美國家有顯著差距,為能促進全球人民生活福祉及活絡商機,各國政府應更積極地執行開放資料政策,並持續改進。