國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。
CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。
LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。
依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定:
1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。
2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。
然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。
英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)於2020年9月9日發布「國家資料戰略」(National Data Strategy),作為英國規劃其政府資料流通運用的整體性框架。數位、文化、媒體暨體育部長Oliver Dowden表示,資料為驅動現代社會經濟發展的關鍵。於今年COVID-19的全球疫情流行期間,政府、企業、組織等彼此及時共享重要資訊,除達成了防疫目標,更維繫了各層面的經濟生活。因此,本戰略則規劃活用此段期間獲得的知識與經驗,試圖透過資料的釋出流通與運用,讓英國經濟自COVID-19疫情中復甦,提高生產力與創造新型業態,改善公共服務,並使之成為推動創新的樞紐。 為優化英國資料的運用,本戰略提出了四個核心面向:(1)資料基礎(data foundation):資料應以標準化格式,且符合可發現(findable)、可取用(accessible)、相容性(interoperable)與可再利用(reusable)的條件下記載;(2)資料技能(data skills):應藉由教育體系等培養一般人運用資料的技能;(3)提升資料可取得性(data availability):鼓勵於公共、私人與第三部門加強協調、取用與共享具備適切品質的資料,並為國際間的資料流通提供適當的保護;(4)負責任的資料(responsible):確保各方以合法、安全、公平、道德、可持續、和可課責(accountable)的方式使用資料,並支援創新與研究。 基此,本戰略進一步提示了五個優先任務:(1)釋出資料的整體經濟價值:建立適切的條件,使資料在經濟體系內可取得且具備可取用性,同時保護私人的資料權(data rights)、以及企業的相關智慧財產權;(2)建構具發展性且可信賴的資料機制:協助企業家與新創人士以負責任及安全的方式使用資料,避免產生監管上的不確定性或風險,並藉以推動經濟發展。同時,也期待藉由機制的建立,鼓勵公眾參與資料的數位經濟應用;(3)改變政府運用資料的方式,提升效率及改善公共服務:以COVID-19疫情期間政府對資料積極運用為契機,推動政府間的整體資料有效管理、使用與共享措施,為相關作法建構一致性的標準與最佳實踐方式;(4)建立資料基礎設施的安全性與彈性:資料基礎設施為國家關鍵資產,應避免其遭遇安全或服務中斷的風險,進而導致資料驅動的相關業務或組織服務中斷;(5)推動國際資料流(international flow of data):與國際夥伴合作,確保資料的流通運用不會因各地域的制度不同,而受到不當限制。
知己知彼,兩岸研發經費比一比依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。 另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。 然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。
法國CNIL發布針對應用程式的隱私保護建議在民眾越來越依賴行動裝置的應用程式進行日常活動的年代,諸如通訊、導航、購物、娛樂、健康監測等,往往要求訪問更廣泛的資料和權限,使得應用程式相較於網頁,在資料安全與隱私風險上影響較高。對此,法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)於2024年9月發布針對應用程式隱私保護建議的最終版本,目的為協助專業人士設計符合隱私友好(privacy-friendly)的應用程式。該建議的對象包含行動裝置應用程式發行者(Mobile application publishers)、應用程式開發者(Mobile application developers)、SDK供應商(Software development kit, SDK)、作業系統供應商(Operating system providers)和應用程式商店供應商(Application store providers),亦即所有行動裝置生態系中的利害關係者。以下列出建議中的幾項重要內容: 1. 劃分利害關係者於手機生態系中的角色與責任 該建議明確地將利害關係者間作出責任劃分,並提供如何管理利害關係者間合作的實用建議。 2. 改善資料使用許可權的資訊提供 該建議指出,應確保使用者瞭解應用程式所請求的許可權是運行所必需的,並且對資料使用許可的資訊,應以清晰及易於獲取的方式於適當的時機提供。 3. 確保使用者並非受強迫同意 該建議指出,使用者得拒絕並撤回同意,且拒絕或撤回同意應像給予同意一樣簡單。並再度強調應用程式僅能在取得使用者知情同意後,才能處理非必要資料,例如作為廣告目的利用。 此建議公布後,CNIL將持續透過線上研討會提供業者支援,協助其理解和落實這些建議。同時,CNIL表示預計於2025年春季起,將對市面上應用程式實行特別調查,透過行政執法確保業者遵守相關隱私規範,尤其未來在處理後續任何投訴或展開調查時,會將此建議納入考慮,且會在必要時採取糾正措施,以有效保護應用程式使用者的隱私。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} .Psrc{text-align: center;}
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)