美國商務部產業安全局(Bureau of Industry and Security, BIS)於2025年1月2日發布保護無人機系統資通訊技術及服務供應鏈(Securing the Information and Communications Technology and Services Supply Chain: Unmanned Aircraft Systems)之法規制定預告(advance notice of proposed rulemaking, ANPRM),其目的在於透過維護供應鏈安全,避免中俄等外國敵對勢力,藉由參與無人機系統(Unmanned Aircraft Systems, UAS)資通訊技術與服務(Information and Communications Technology and Services, ICTS)遠端存取和操縱UAS,提高美國敏感資訊暴露風險。本次ANPRM是BIS依據2019年5月15日川普總統簽署之確保ICTS供應鏈安全的第13873號行政命令所發布。
為確保UAS安全,BIS針對下列事項尋求公眾意見,包括但不限於:
1. 無人機系統及其零組件的定義:
針對BIS初步認定之下列UAS平台必要組成部分,評估其定義和標準功能:(1)機載電腦;(2)通訊系統;(3)飛行控制系統;(4)地面控制站或系統;(5)運作軟體;(6)任務規劃軟體;(7)智慧型電池電源系統;(8)本地和外部資料儲存設備和服務;及(9)人工智慧軟體或應用程式;
2. 評估是否有資料外洩和遠端存取控制以外的其他風險;
3. 評估不同外國敵對勢力帶來的風險,例如:是否應考慮與外國敵對勢力有關聯的特定個人或實體等;
4. 評估例外可允許交易的情形;及
5. 評估相關經濟性影響,例如:對美國企業或公眾資料隱私和保護、反競爭效應(Anticompetitive Effects)等,及其應有的相應措施。
BIS開放公眾得針對該ANPRM於2025年3月4日前提出意見,俾利後續發布法規。
本文為「經濟部產業技術司科技專案成果」
世界智慧財產權組織(WIPO)已於2005年初正式宣告收到第一百萬件國際專利申請,並向全世界的創新者表示敬意。國際專利的申請係規範於〔專利合作條約〕(PCT),WIPO總幹事卡米爾‧伊德里斯博士對PCT創建26年歷史上的這一里程碑表示技術進步的步伐在大大加快,並反映了智慧財產權制度對刺激技術發展和豐富公有知識領域所作出的貢獻。 PCT簡化了公司和發明者在多個國家獲得專利權的程序,且公司和發明者如以各自國家專利制度所規定的規則和條例辦理專利申請事宜,則有可能發生喪失專利權的情況。 PCT體系的成員包括美國、日本、德國、英國和法國等先進發展國家,惟部份發展中國家所提出的國際專利申請量也正持續快速增加,表現最為突出的是印度與韓國,這兩個國家在2003年的國際專利均呈現倍數成長的趨勢。
加拿大政府提交予國會《人工智慧資料法案》加拿大政府由創新、科學和工業部長(Minister of Innovation, Science and Industry)代表,於2022年6月16日提交C-27號草案,內容包括聯邦的私部門隱私權制度更新,以及新訂的《人工智慧資料法案》(Artificial Intelligence and Data Act, 下稱AIDA)。如獲通過,AIDA將是加拿大第一部規範人工智慧系統使用的法規,其內容環繞「在加拿大制定符合國家及國際標準的人工智慧設計、開發與應用要求」及「禁止某些可能對個人或其利益造成嚴重損害的人工智慧操作行為」兩大目的。雖然AIDA的一般性規則相當簡單易懂,但唯有在正式發布這部包含絕大多數應用狀況的法規後,才能實際了解其所造成的影響。 AIDA為人工智慧監管所設立的框架包含以下六項: (1)方法 以類似於歐盟《人工智慧法案》採用的方式,建立適用於人工智慧系統具「高影響力」的應用方式的規範,關注具有較高損害與偏見風險的領域。 (2)適用範圍 AIDA將適用於在國際與省際貿易及商業行動中,設計、發展或提供人工智慧系統使用管道的私部門組織。「人工智慧系統」的定義則涵蓋任何「透過基因演算法、神經網路、機器學習或其他技術,自動或半自動處理與人類活動相關的資料,以產生結果、做出決策、建議或預測」的技術性系統。 (3)一般性義務 I 評估及緩和風險的措施 負責人工智慧系統的人員應評估它是否是一個「高影響系統」(將在後續法規中詳細定義),並制定措施以辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果。 II 監控 對該「高影響系統」負責的人員應建立準則,以監控風險緩解措施的遵守情況。 III 透明度 提供使用管道或管理「高影響系統」運作的人員應在公開網站上,以清晰的英語揭露 i 系統如何或打算如何使用。 ii 系統所生成果的類型及它所做出的決策、建議與預測。 iii 為辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果,而制定的緩解措施。 iv 法規明定應揭露的其他訊息。 IV 記錄保存 執行受規範活動的人員應遵守紀錄保存要求。 V 通知 若使用該系統將導致或可能導致重大傷害,「高影響系統」的負責人應通知部門首長。 VI 匿名資料的使用 從事法案所規定的活動及在活動過程中使用或提供匿名資料的人員,必須依據規範制定關於(a)資料被匿名化處理的方式(b)被匿名化資料的使用與管理,兩方面的措施。 (4)部長命令 部門首長可以透過命令要求(a)製作紀錄(b)從事審計或聘請一位獨立的審計師執行(c)成立一個專責執行審計程序的組織(d)成立一個在有理由相信「高影響系統」之使用可能造成急迫重大傷害風險時負責進行終止或准許的組織。 (5)行政管理 AIDA為部門首長制定一項,可指定其所管轄部門中一名高級官員為「人工智慧與資料專員」的權利,其職責在協助部門首長管理與執行AIDA。 (6)罰則 違反AIDA規範之罰則主要為按公司、個人之收入衡量的罰款。特定嚴重狀況如以非法方式取得人工智慧訓練用資料、明知或故意欺騙大眾造成嚴重或心理傷害或財產上重大損失,亦可能判處刑事監禁。
美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護 資訊工業策進會科技法律研究所 2024年12月10日 美國消費者金融保護局(Consumer Financial Protection Bureau, CFPB)於2024年10月22日發布最終規則以落實2010年《消費者金融保護法》(Consumer Financial Protection Act, CFPA)第1033條規定之個人金融資料權利[1],該規則即通常所稱之「開放銀行」(Open Banking)規則。 壹、事件摘要 本次CFPB頒布最終規則旨在賦予消費者對其個人金融資料更大的權利、隱私與安全性。透過開放消費者金融資料,消費者得更自由地更換金融服務提供者以尋求最佳交易,從而促進市場競爭,並激勵金融機構精進其產品與服務[2]。 貳、重點說明 最終規則要求資料提供者在消費者及授權第三方之請求下,提供消費者金融產品或服務相關資料,並應以消費者及授權第三方可使用之電子形式提供。最終規則亦制定標準,以促進資料標準化格式(standardized formats)之發展和使用,同時規範第三方近用消費者資料義務,包括對資料之蒐集、利用及保留限制。相關重點如下: 一、受規範機構主體 最終規則規範對象為資料提供者(data provider),包含銀行、信用合作社等存款機構(depository institution);發行信用卡、持有交易帳戶、發行用於近用帳戶設備或提供支付促進服務(payment facilitation service)等非存款機構[3]。值得注意者,最終規則將數位錢包(digital wallet)及支付應用程式(payment app)業者納入資料提供者範圍,亦即被廣泛使用的金融科技服務亦將受到開放銀行規範體系之約束。此外,資料提供者不得向消費者或第三方收取資料近用之費用。 二、受規範資料範圍 最終規則規範之資料範圍涵蓋:資料提供者控制或擁有之24個月內之歷史交易資訊、帳戶餘額、付款資訊、契約條款與條件、即將到期之帳單、以及基本帳戶驗證資訊(Basic account verification information)等[4],消費者得授權第三方近用此類資料。至於機密商業資訊、蒐集資料僅用於防止詐欺、洗錢,或為偵測或報告其他非法及潛在非法行為,又或基於其他法律要求保密之資訊,以及在正常業務過程中無法檢索之資料,則豁免最終規則之適用[5]。 三、消費者與開發者介面 根據最終規則,資料提供者須建立及維護兩個獨立的介面以利資料之近用,包含:消費者介面,例如提供消費者近用其資料之入口網站,以及授權第三方之開發者介面(developer interface),例如應用程式介面(Application Programming Interface, API),雖最終規則不要求使用任何特定技術,然仍要求資料提供者須以標準化機器可讀格式(Standardized and Machine-Readable Format)提供資料,介面功能要求須達每月最低99.5%之回應率(response rate)[6]。此類資訊須在每月最末日前揭露於資料提供者網站上。此外,介面之設計須遵守《美國金融服務業現代化法》(The Gramm-Leach-Bliley Act, GLBA)」及聯邦貿易委員會(Federal Trade Commission, FTC)之《消費者資訊保障標準》(Standards for Safeguarding Customer Information)等消費者資料保護法規義務[7]。 四、授權第三方之行為義務 授權第三方(authorized third party)為代表消費者向資料提供者請求近用資料,藉以提供消費者產品或服務者。為解決隱私與資料安全問題,該規則對尋求近用消費者資料之第三方提出數項要求[8],包含但不限於: (一)知情同意之取得 第三方須取得消費者明確知情同意(express informed consent),以便代表消費者近用資料。 (二)資料利用之限制 第三方須確保將其資料之蒐集、利用及保留限制在提供消費者所請求的產品或服務之合理必要範圍內。就此部分,精準廣告(targeted advertising)、交叉銷售(Cross-selling),以及銷售資料並非提供產品或服務之合理必要範圍。 (三)遵守聯邦法規 第三方須依GLBA第501條規定或FTC之《消費者資訊保障標準》確保在其系統中採用「資訊安全計畫」(information security program)。 (四)政策與程序文件要求 第三方應擁有合理書面政策和程序,以確保從資料提供者處準確接收資料,並提供於其他第三方,即資料正確性之確保。 (五)資料撤回權之確保 第三方應向消費者提供撤回第三方授權之方法,撤回過程須簡易明瞭。在第三方收到消費者撤回授權之請求時,應通知資料提供者以及已向其提供消費者資料之其他第三方。 (六)第三方監督義務 第三方應透過契約要求其他第三方在向其提供消費者資料前遵守特定第三方法定義務。 (七)資料保存期限 消費者資料之保存期限最長為一年。若繼續蒐集,第三方應取得消費者重新授權。若消費者不提供重新授權或撤回授權,第三方應停止資料之蒐集,並停止利用與保留先前蒐集之資料。 五、實施日期 最終規則將依機構資產規模分階段實施[9],最大規模之機構(資產總額為2500億美元以上之存款機構資料提供者,以及在2023年或2024年任一年中,總收入達到100億美元以上之非存款機構資料提供者)須在2026年4月1日前遵守最終規則。對於規模最小之機構(資產總額低於15億美元但高於8.5億美元之存款機構資料提供者)須於2030年4月1日前遵守該規則。另總資產低於8.5億美元之存款機構不受該規則限制,以減輕小型銀行及信用合作社合規負擔。 參、事件評析 CFPB之CFPA第1033條最終規則將重塑美國金融市場之監理格局,由市場驅動之開放銀行框架走向由政府透過法規實質監理之管制措施,要求業者開放消費者資料。值得留意者,歐盟執委會(European Commission)2023年6月推出之「金融資料近用」(Financial Data Access, FiDA)草案[10]亦基於消費者賦權理念,強化消費者對其資料權利之控制權。由此可觀察國際間金融資料利用與監理規範逐漸走向以消費者資料自主為中心之法制架構,當代金融資料監理趨勢或值得我國主管機關及業者留意關注,除可作為我國金融資料法制與政策制定之參考,亦供我國企業布局全球化金融服務提前作好準備。 [1]Required Rulemaking on Personal Financial Data Rights, 89 Fed. Reg. 90838. [2]Consumer Financial Protection Bureau, CFPB Finalizes Personal Financial Data Rights Rule to Boost Competition, Protect Privacy, and Give Families More Choice in Financial Services, available at https://www.consumerfinance.gov/about-us/newsroom/cfpb-finalizes-personal-financial-data-rights-rule-to-boost-competition-protect-privacy-and-give-families-more-choice-in-financial-services/(last visited Dec. 5, 2024). [3]12 C.F.R. § 1033.111. [4]12 C.F.R. § 1033.211. [5]12 C.F.R. § 1033.221. [6]12 C.F.R. § 1033.311. [7]See id. [8]12 C.F.R. § 1033.421. [9]12 C.F.R. § 1033.121. [10]Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on a framework for Financial Data Access and amending Regulations (EU) No 1093/2010, (EU) No 1094/2010, (EU) No 1095/2010 and (EU) 2022/2554.
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」