美國前任總統拜登於2022年底簽署《FDA現代化法2.0》(FDA Modernization Act 2.0, FDAMA 2.0),修改FDA自1938年以來新藥必須實施動物試驗之要求,將進入人體臨床試驗之前階段試驗改稱為「非臨床試驗(nonclinical test)」並許可採取非動物實驗方法,為美國在藥物安全監管方面的重大改變。
在FDAMA 2.0通過後,FDA仍未啟動修改監管法規以符合該法,為了確保改革能加速進行,2024年2月6日美國兩黨參議員合作提出《FDA現代化法案3.0》(FDAMA 3.0) 草案並於同年12月12日參議院無異議通過,惟眾議院在第118屆國會結束前並未討論該案,參議員於2025年2月第119屆國會重新提出該法案。
FDAMA 3.0重點包括:
1. 一般規定:FDA應於1年內,建立針對藥品的非臨床測試方法資格認定流程(Nonclinical Testing Methods Qualification Process);個人可申請特定用途的非臨床測試方法資格認定。
2. 符合資格之非臨床測試方法:非臨床測試方法必須可替代或減少動物測試;且提高非臨床測試對安全性和有效性的預測性,或縮短藥物(含生物製品)的開發時間。
3. 符合資格認定之應用:獲資格認定之非臨床測試方法,FDA應加速相關藥品申請(包括變更申請)的審核流程;允許申請人於藥品申請中引用相關數據與資訊。
4. 本法生效日起兩年內應每年向國會報告流程運行情形,包括已認定的方法類型、申請數量、審查天數、批准數量,以及該流程減少的動物數量估算等。
目前雖然其他國家尚未有類似立法,但歐美均投入大量研發資源減少動物實驗,且FDA亦於近日提出《減少臨床前安全試驗使用動物實驗之路線圖》,後續應密切關注本法案是否通過及相關產業影響。
聯合國環境規劃署(UNEP)正式發表「全球綠色新政」(Global Green New Deal)報告,建議各國投入GDP1%(約7,500億美元)資助綠色環境建設及發展,除期使更落實綠色經濟倡議(Green Economy Initiative)內容外,並希望以此帶動綠領就業(Green Collar Job)及促進綠色研發活動蓬勃。 聯合國UNEP於2009年2月對外發表全球綠色新政報告,並倡導五大重要投資領域,包括以下: (1) 提昇各新舊建築物能源使用效率領域之投資。 (2) 再生能源(包括太陽能、風力、地熱能、生質能等)領域之投資。 (3) 永續交通運輸環境(包括氫能汽車、高速鐵路、快速捷運系統等)領域之投資。 (4) 全球性生態構成(包括潔淨水、森林、土壤等)基礎環境領域之投資。 (5) 永續農業(包括有機農產品)領域之投資。 聯合國UNEP並於研究報告中強調:綠色經濟轉向之根本驅動力在於導入相關綠色科技之解決方案,包括各種清潔生產製程、污染防治技術,以及管末和監控技術,涵蓋know-how、流程、商品、服務、設備、組織和管理等,均為綠色經濟蓬勃發展之關鍵環節。 而世界各國關於推動綠色新政投資之規劃行動,如歐盟於2008年11月29日通過經濟振興方案,總預算為2000億歐元(1.5%EU的GDP),方案內容涵蓋4大優先領域,亦即為民眾(people)、商業(business)、基礎建設及能源(infrastructure and energy)、研究與創新(research and innovation),歐盟也呼籲各國應多投入綠色科技研發活動。 而美國2009年2月通過之復甦與再投資法案(American Recovery and Reinvestment Act),亦將綠色新政涵蓋其中,其中編列61.3 billion美元投入「清潔、效率能源方案」,主要係投資於提升能源效率、發展潔淨能源及交通效率及科技研發等。 以外,日本政府於2009年2月亦指示著手研擬「綠色新政」規劃,,預計於6月後向首相提出建議書,以因應氣候變遷及經濟危機威脅等危機。而南韓則是於2009年1月宣布未來4年將投入50兆韓元推動「綠色新政」,並以此投資行動,刺激創造更多的綠色就業機會。
美國食品藥物管理局(FDA)提案更新食品營養標示為了讓美國消費者可以完全明瞭日常購買食品所蘊含的營養內容,美國食品藥物管理局(Food and Drug Administration, FDA)於二月提案更新現行食品營養標示(Nutrition Facts Label)所必須彰顯的營養物內容。本次食品營養標示的調整,主要是針對從最新飲食建議、共識報告與全國調查數據所彙整出的結果,就攸關消費者疾病、健康與日常需求的營養物,重新就標示內容進行調整,以強化食品安全的資訊透明,落實保障消費者在選擇食品的資訊平等地位。以下,將針對本次主要調整事項分別作簡要說明: 在新的食品營養標示中,首先,要求額外列出添加糖(added sugars)的數量,以避免消費者因食用過多的糖分而導致肥胖(obesity)或促發其他疾病的發生;第二,要求更新食品營養物份量(serving size),對於食品營養標示需顯示消費者「實際食用」的份量,而非顯示消費者「可能食用」的份量;第三,要求標示鉀(potassium)與維他命D(vitamin D)的含量,以反應相關報告顯示美國人普遍對於鉀與維他命D有攝取不足的現象;第四,調整不同營養素(例如:鈉、膳食纖維與維他命D)的每日攝取標示,使消費者瞭解食品所含營養素內容;第五,持續要求標示總體脂肪(Total Fat)、飽和脂肪(Saturated Fat)與反式脂肪(Trans Fat),並去除卡路里來自脂肪的標示,以提供消費者攸關其健康更有用的資訊;最後,針對食品營養標示的型式進行調整,強調例如像是卡路里、份量與每日攝取比率之標示,以緩和美國近來日益嚴重的肥胖與心臟疾病等問題。 考量美國公共健康問題日益浮出檯面,FDA近來針對食品營養標示型式與內容進行調整,希望藉由資訊透明化的方式,讓消費者明瞭市售食品營養素是否影響自身健康,以作為挑選食品時的首要考量,進而降低不健康食品對消費者所帶來的危害。鑑於近來台灣食安問題日益嚴重,衛生主管機關是否亟需就食品營養標示,參酌美國或國外規範重新另作檢視,來確保消費者買得放心、食得安心,並吃出健康,則是現行衛生主管機關需另考量的重點。
日本中小企業廳與特許廳聯合施政,強化中小企業或新創企業智財資源之運用日本於2021年12月27日公布「促進中小企業或新創企業智財運用之行動計畫」,該行動計畫是考量到面臨COVID-19疫情、數位化轉型、氣候變遷等背景下,中小企業或新創企業必須善用企業嶄新的技術或發想,以應對商業環境的變化,而智財權作為企業競爭力的動力來源,顕示出強化智財的管理及運用是不可欠缺的課題。 為了提升中小企業或新創企業的智財運用,日本中小企業廳與特許廳以提供一站式服務整合智財運用支援作為目標,制定行動計畫。施政主要重點如下: 強化與「智財綜合支援窗口」之整合:中小企業廳強化與特許廳聯合INPIT(National Center for Industrial Property Information and Training,獨立行政法人工業所有權情報研修館。主要業務為提供智財資料查詢、諮詢窗口、智財人才培育)共同設立的「智財綜合支援窗口」。促使「智財綜合支援窗口」與既有中小企業廳的商業管理諮詢窗口,共同協助企業以智財運用解決商業管理課題、建構智財戰略,同時也有提供專家派遣協助在地品牌的管理。 優化智財交易:除了加強中小企業廳的商業管理諮詢窗口與智財綜合支援窗口的資訊流通之外,INPIT也搭配說明動畫,提供企業智財相關法規、契約書範本、外包法等與智財交易相關知識,以及幫助企業製作用於金融機構評估企業智財價值時之文件。 海外發展智財支援:中小企業廳與特許廳針對海外發展的企業發放外國智財權申請之補助金、政策施予優惠措施,並由INPIT提供海外發展時,應留意智財權相關風險等專業建議。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。