美國參議院重新提出FDA現代化法案3.0,加速新藥開發之動物實驗新替代方法發展

美國前任總統拜登於2022年底簽署《FDA現代化法2.0》(FDA Modernization Act 2.0, FDAMA 2.0),修改FDA自1938年以來新藥必須實施動物試驗之要求,將進入人體臨床試驗之前階段試驗改稱為「非臨床試驗(nonclinical test)」並許可採取非動物實驗方法,為美國在藥物安全監管方面的重大改變。

在FDAMA 2.0通過後,FDA仍未啟動修改監管法規以符合該法,為了確保改革能加速進行,2024年2月6日美國兩黨參議員合作提出《FDA現代化法案3.0》(FDAMA 3.0) 草案並於同年12月12日參議院無異議通過,惟眾議院在第118屆國會結束前並未討論該案,參議員於2025年2月第119屆國會重新提出該法案。

FDAMA 3.0重點包括:

1. 一般規定:FDA應於1年內,建立針對藥品的非臨床測試方法資格認定流程(Nonclinical Testing Methods Qualification Process);個人可申請特定用途的非臨床測試方法資格認定。

2. 符合資格之非臨床測試方法:非臨床測試方法必須可替代或減少動物測試;且提高非臨床測試對安全性和有效性的預測性,或縮短藥物(含生物製品)的開發時間。

3. 符合資格認定之應用:獲資格認定之非臨床測試方法,FDA應加速相關藥品申請(包括變更申請)的審核流程;允許申請人於藥品申請中引用相關數據與資訊。

4. 本法生效日起兩年內應每年向國會報告流程運行情形,包括已認定的方法類型、申請數量、審查天數、批准數量,以及該流程減少的動物數量估算等。

目前雖然其他國家尚未有類似立法,但歐美均投入大量研發資源減少動物實驗,且FDA亦於近日提出《減少臨床前安全試驗使用動物實驗之路線圖》,後續應密切關注本法案是否通過及相關產業影響。

相關連結
※ 美國參議院重新提出FDA現代化法案3.0,加速新藥開發之動物實驗新替代方法發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9297&no=57&tp=1 (最後瀏覽日:2025/12/29)
引註此篇文章
你可能還會想看
歐巴馬宣布將立法保護學生數位隱私權

  美國總統歐巴馬日前表示其將訂立「學生數位隱私法」(The Student Digital Privacy Act)以確保因教育目的而被蒐集之學生個人資料將不會被用於無關之用途。換言之,該法將禁止,例如,利用所蒐集資料對學生進行精準行銷的行為,但仍會許可蒐集者利用所蒐集資料改善其所提供之軟硬體教育設備或用以幫助學生之學習品質。   針對學生之隱私保護,目前於聯邦層級至少已有家庭教育權利與隱私法(Family Educational Rights and Privacy Act,FERPA),該法及其授權法令雖賦予學生及其家長對學校所保有之教育紀錄(educational record)之蒐集、使用有知情同意權及其他如修正教育紀錄之權利。但FERPA也列了相當多的例外情形,例如,醫療資料、受雇紀錄等均不在教育紀錄之列;此外,學校亦可不經同意即公布學生的姓名、電子郵件、出生地、主修、預計畢業日期等資料。   學生數位隱私法未來如能獲國會通過成為法律,該法與FERPA的異同,及其內容與施行實務是否確有助於學生隱私之改善,仍有待觀察。

國際標準化組織(ISO)在COP29上發布全球ESG原則實施框架

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 在2024年11月11日至22日舉辦第29屆聯合國氣候變化大會(COP29)上,國際標準化組織(ISO)發佈全球第一部ESG國際標準:ISO ESG IWA 48《實施環境、社會和治理(ESG)原則框架》(Framework for implementing environmental, social and governance (ESG) principles)(簡稱為IWA 48:2024),為全球各地區、不同規模的企業提供統一管理標準,同時提供實施指引和行動範例,應對永續發展挑戰。 IWA 48有以下幾大重點: 1. ESG原則和實踐(Principles and practices in ESG):強調誠信、成效、公平、風險與機會、證據、持續改善等原則。 1.1風險與機會:風險跟機會應由高階管理階層從組織整體評估,因風險可能同時伴隨機會;同時,管理層面要運用科學方法及可靠數據紀錄,評估與建立行動方案與追蹤管控。 1.2負責及公開透明:在ESG原則為關鍵要素,清楚揭露經營績效和永續資訊,不僅可增強利害關係人信心,也有助於保護組織商譽。 1.3利害關係人參與:組織應重視內、外部利害關係人的意見,如員工、股東、客戶、供應商等;舉例來說,組織落實資訊公開,並藉由問卷或會議形式,請利害關係人回饋期望或意見。 1.4重大主題:組織評估內外部之營運狀況所可能遭遇挑戰,且考量利害關係人回饋、產業特性,進而辨識各項議題之衝擊程度與關聯性,及排定優先順序來制訂行動方案。 1.5關鍵績效指標(KPI)評估:針對各項重大主題依可靠數據紀錄,進而運用量化或質化手段,設定短期、中期和長期之具體目標。 2. 環境(Environmental):評估組織營運活動與環境變化之相互關係,因此須要根據科學方法建立基準與制訂目標,確保營運過程能有效執行策略。 3. 社會(Social):主要關注組織如何承擔社會責任,推動具有社會價值行為和政策,除遵循當地勞動法令外,可額外提供福利或照顧措施,如組織接納各國人民,公平方式進行面試,培訓應保障不會發生任何歧視情事。 4. 治理(Governance):董事會或管理階層要明確公告組織永續政策與要求,並建立道德規範,如誠信經營,法令遵循、風險管理等,尤其鑑別永續相關風險,如當地法令異動、環境變化,更要與利害關係人保持溝通與合作,進而評估組織政策與執行方向,再依據營運需求調整。 5. 合規性和一致性(Compliance and conformity):組織可採用第三方查(驗)證方式,協助組織評估有無符合當地法令、達到ESG要求標準,及組織對於ESG之承諾。 6. 報告(Reporting):組織可公開揭露永續資訊,如永續報告書或年報等;再者,組織應確保揭露內容之準確、清楚與可靠,並正面及負面資訊均清楚完整揭露,以讓利害關係人了解狀況與趨勢。 7. 持續改善(Continual improvement):透過關鍵績效指標(KPI)檢核,定期確認組織達成永續目標狀況,如有未達預期情事者,應落實根因分析、制訂矯正預防措施,並予以揭露與執行改善,以確保能達到長期目標。

歐盟執委會發布《2019歐盟產業研發投資計分板》,美國和歐盟為世界研發投資最主要地區

  歐盟執委會(European Commission, EC)於2019年12月18日發布《2019歐盟產業研發投資計分板》(The 2019 EU Industrial R&D Investment Scoreboard)。產業研發投資計分板是歐盟每年出具一次的報告,2019年計分板報告包含2500家在2018-2019年間投入最多研發資金的企業,分別位於全球44個國家/地區,每一企業的研發投資金額超過3000萬歐元,總計約為8234億歐元,為全球研發支出的90%。在這2500家企業中,551家來自歐盟公司,為投資總額的25%;769家來自美國,為投資總額的38%;318家來自日本,佔13%;507家中國公司,佔12%。   報告中指出,2018年企業研發投資總額較2017年增加8.9%,主要是中國在全球研發資金投入比例不斷增加。另外,研發投資高度集中於大型企業;在這2500家企業中,前10大、前50大企業分別佔研發總額的15%和40%。前50大企業中,最多者為美國企業22家和歐盟企業17家。再從研發投資領域觀察,前三大領域分別為資通訊產業(38.7%)、健康(20.7%)和汽車產業(17.2%),佔總量的76.6%。但每一個國家重視的領域不盡相同,例如歐盟投資20%在資通訊、21.6%在健康、31%汽車,而美國的資通訊研發投資佔了52.8%、26.7%在健康,僅有7.6%在汽車。   再從個別企業研發投資排名來看,前四大企業分別為Alphabet、Samsung、Microsoft和Volkswagen。另外,報告統計在過去的15年中,有8家企業在全球研發投資金額排名中上升了70名以上,分別為:Alphabet、華為、蘋果、Facebook、阿里巴巴、Celgene、Gilead Sciences和德國馬牌;也代表這15年間資通訊、生技與汽車產業發展的重要性。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。   德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。   例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。

TOP