英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。
由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下:
(1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。
(2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。
(3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。
(4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。
(5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。
本文為「經濟部產業技術司科技專案成果」
英國技術移轉政府辦公室(Government Office for Technology Transfer, GOTT)於2022年4月成立,主要解決公部門研發成果,即「知識資產」(knowledge assets, KA),因面臨運用不足及管理等困境,並積極推動公部門衍生新創政策,促進KA產業化。 GOTT會依研發法人的需求及經驗程度,提供個別支援性服務,如協助較無KA運用經驗之法人設置KA運用工作規則及管理方式等直接技術性指導,亦提供較有KA運用經驗之法人額外投資資金及其他資源挹注。 GOTT於2024年7月5日發布過去一年(2023年4月1日至2024年3月31日)之施政報告,主要重點簡述如下: (1)對「玫瑰書」(the Rose Book),即政府KA管理指引,提出細部操作指引,如:「PSB內KA管理負責人角色任命指引」、「協助PSB制定KA管理策略指引」、「智慧財產權及其機密性指引」、「附件A–知識資產類別與類型」、「附件B–KA評估工具」、「附件C–商業化路線」、「附件D–獲取KA指引」、「附件E–人才流動指引」以及「申請KA補助基金指引」等。 (2)推出首個政府對公部門創新研發之市場驗證加速器計劃,稱為「公共研究創新和市場加速器」(the Public Research Innovation and Market Accelerator, PRIMA),協助公部門創新者測試其研發構想、產品及服務是否有市場發展潛力。 (3)發布「公部門衍生新創公司研究」(Public Sector Spinouts Study),為英國政府首次對公部門推動衍生新創政策及制度進行審查,顯示英國推動上遇有許多推動障礙,研究最後對英國政府及GOTT提供多項施政建議。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
FCC將電力線寬頻上網(BPL, Broadband over Power Line)服務分類為資訊服務FCC經過討論與投票,正式發佈命令將電力線寬頻上網服務分類為跨州資訊服務(interstate information service),而非電信服務,其他寬頻上網科技包括DSL、有線電纜線數據機寬頻上網亦被FCC分類為資訊服務。 過去幾年來,FCC一直大力支持電力線寬頻上網服務,期望電力線寬頻上網服務可以進入寬頻服務市場,與DSL和有線電視纜線數據機寬頻上網服務競爭,以增加寬頻服務市場之競爭,提高美國之寬頻普及率。而就此次所發佈之命令,FCC認為,將電力線寬頻上網分類為資訊服務將可使電力線寬頻上網服務受到較低的管制,有助於達成隨時隨地提供所有美國民眾寬頻接取之目標。其次,FCC在數位匯流時代之管制乃是期望能對於各種不同技術之寬頻接取平台給予一致的管制措施,並且對於相同之服務採取相同的管制方式。基於上述原因,FCC此次將電力線寬頻上網分類為資訊服務並不讓人感到意外。 FCC主席Kevin J. Martin進一步在其聲明中表示,雖然目前電力線寬頻上網人口並不多,然在2005年其成長率卻將近200%,顯見電力線寬頻上網服務之市場潛力不容忽視,將可幫助達成美國總統定下於2007年底前隨時隨地提供全國民眾寬頻網路接取之目標。
數位著作權侵權監控公司Rightscorp, Inc.之爭議Rightscorp, Inc.成立於2011年,總部位於美國洛杉磯,該公司與網際網路服務提供者合作(Internet Service Provider, ISP),監控以P2P方式所進行之非法下載行為,並依數位千禧年著作權法(Digital Millennium Copyright Act)之規定,代理權利人與當事人和解(下載一非法檔案的和解金額是20美元)或透過訴訟以保護權利人之智慧財產權,近年越來越多大學甚至是華納兄弟(Warner Bros.)、唱片公司BMG使用Rightscorp這樣第三方公司的服務來監控非法網路活動。 年初(2015)在喬治亞州(City of Monroe, Georgia),該公司因未得消費者同意以電話留言或者發送簡訊、email的方式威嚇消費者達成非法著作權下載之和解,被控訴違反「電話消費者保護法」(Telephone Consumer Protection Act),原告Brown和Ben Jenkin主張針對每一筆非法之通訊連絡請求損害賠償,總額估算可能會超過千元美元。 去年(2014),Rightscorp在加州聯邦法院(California federal court)面臨之集體訴訟仍在進行中,原告方指出Rightscorp並未提供非法下載之債務有效證明且濫用美國千禧年著作權法(DMCA)的通知機制,控訴該公司違反「電話消費者保護法」(TCPA)、「公平債務催收行為法案」(Fair Debt Collection Practice Act )和「濫用訴訟權利」(Abuse of Process)。 Rightscorp的商業模式,對權利人來說,確實可以有效追蹤侵權行為人,某種程度上可適當地遏止非法下載行為,但手段上也影響到當事人的權利,妥適性有待商榷。惟可預見的是,後續判決結果將可能影響類似公司在防範網路非法下載時的相關反制措施。