演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。

隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。

一、《紐澤西州反歧視法》之適用主體及適用客體

《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。

此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。

二、 歧視行為的三種樣態

1.差別待遇歧視
差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。

2.差別影響歧視
差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。

3.未提供合理調整
合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。

為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

相關連結
你可能會想參加
※ 演算法歧視將適用於《紐澤西州反歧視法》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9320&no=64&tp=1 (最後瀏覽日:2025/05/19)
引註此篇文章
你可能還會想看
歐盟網路暨資訊安全局發布「重要基礎設施資訊安全培訓需求盤點報告」加強重要部門資訊安全作業

  歐盟網路暨資訊安全局於2017年12月7日發布「重要基礎設施資訊安全培訓需求盤點報告」(Stocktaking of information security training needs in critical sectors)之文件,點出各重要基礎設施之「電腦安全事件反應小組」(Computer Security Incident Response Teams, CISRT)所必須接受之資安訓練種類。   歐盟之網路與資訊系統安全指令(The Directive on security of network and information systems, NIS Directive)規範各成員國之重要服務營運者(operator of essential service)必須確認出哪些服務於維繫社會與經濟活動上具備重要性。被認定具備重要性之部門如下:能源、運輸、銀行業、金融市場基礎設施、健康照護部門、飲用水供應與分配、數位基礎設施。   此份報告指出,該重要性部門之資安等級需求並不盡相同,因此導致各部門面對資安事件之準備無法相提並論。例如,能源產業會用到SCADA系統,而金融市場基礎設施則普遍沒有相關需求。而由於NIS指令將上述七種部門列為資訊安全維護最高層級,故此份報告目的係確認該部門當前的處境,並與現階段可取得之網路安全訓練對照,進一步具體檢視各重要部門是否有其他額外的網路安全訓練需求。   我國行政院於民國106年4月公布之資通安全管理法草案要求關鍵基礎設施提供者應訂定、修正、實施資通安全維護計畫,並向中央目的事業主管機關或直轄市、縣(市)政府提出該計畫之實施情形,在未來實際落實各重要性設施之資安維護以及資安小組訓練時,須意識到各重要性設施之資訊安全需求差異性,及相關人員必須針對不同單位而受不同之訓練。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

電子支付指令可望具有書面支付憑證的同等效力

中國大陸為推動商業銀行電子支付業務健全發展、保障電子支付業務中當事人之權益、防範電子支付業務風險並確保銀行與客戶之資金安全, 繼 中國銀行業監督管理委員會 (銀監會)於 5 月 19 日發佈《電子銀行業務管理辦法(徵求意見稿)》(草案)之後,中國人民銀行 於 6 月 9 日公佈《電子支付指引(徵求意見稿)》 (草案), 公開諮詢大眾的意見。該草案規定電子支付指令 ( Electronic Payment Instruction, EPI ) 與書面支付憑證可以相互轉換,兩者具有同等效力。   為達到安全控制,該草案不僅要求銀行採用規定的資訊安全標準、技術標準、業務標準,建立有效的管理制度,同時要求確保業務處理系統的安全性、交易資料的不可否認性、資料儲存的真實性、客戶身份的辨識性,以妥善管理安全認證資料。此外,該草案還對支付過程中所發生的錯誤與責任作了詳細規定。 在風險控制方面, 銀行亦應針對不同客戶,在電子支付業務類型、單筆支付金額和每日累計支付金額等方面作出合理限制。銀行通過網路提供網上支付業務,公司行號與個人客戶之單筆支付金額不得超過 5 萬元。  該草案所稱電子支付是指公司行號或個人通過電子終端機,直接或間接向銀行業金融機構發出支付指令,實現貨幣支付與資金轉移。 電子支付的業務類型分為網上支付(透過網路)、電話支付、移動支付(透過行動通訊設備)、銷售點終端 (point of sale) 交易、自動櫃員機 (ATM) 交易和其他電子支付。

美國士兵曼寧因向「維基解密」網站洩漏國家外交及軍事情報而遭起訴22項罪名

  美國的情報分析員一等兵布蘭德利.曼寧(Brandly Manning),被控訴22項包括通敵罪、非法取得並散布外交及軍事機密的文件給「維基揭密」網站等妨害國家安全罪名,現被拘禁在馬里蘭州的米德堡。     曼寧一審由軍事法院審理,但軍事上訴審法院認為管轄權有爭議,為決定是否繼續適用軍事法院的審理程序,今年10月10日舉行預審聽證會,由五人一組的普通法院法官受理。同時,維基解密、憲法人權中心、美聯社等新聞媒體,均要求軍事法庭依憲法第一修正案,提供曼寧案的相關卷宗資料,但政府發言人查得費雪上尉(Captain Chad Fisher)表示,第一憲法修正案沒有絕對的效力,也未賦予法院公開卷宗的義務。若記者和大眾想獲得案件的文件資料,可透過「情報自由法」申請。但依「情報自由法」的申請程序非常冗長,而且美聯社和曼寧的辯護律師大衛.庫姆斯(david Commbs)的申請都已遭拒絕,律師大衛只能在私人網誌上向關心曼寧案的民眾公布案件進度和內情。     憲法人權中心的律師Shayana Kadidal 表示,不公開卷宗資料,就算參與了聽證會也無法理解案件的真實面貌,而無法做出準確的報導。但軍事法院對於憲法人權中心、新聞媒體及公眾要求公開法庭卷宗的訴求依然無動於衷。軍方和憲法人權中心將在之後會提交聲請,解釋為何他們認為軍事上訴審法院有權裁決卷宗是否公開。     曼寧下次庭期是明年2月4日,若通敵罪成立,曼寧將會被判終身監禁。

TOP