美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

資訊工業策進會科技法律研究所

2025年06月04日

美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。

壹、事件摘要

美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。

生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。

貳、重點說明

一、生成式AI模型訓練及模型權重對重製權之侵害

使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]

在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。

著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]

二、合理使用

對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]

(1) 作品轉化性須視模型目的及佈署判斷

報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]

有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]

(2) 受著作權保護作品之表達性

AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。

(3) 使用作品之合理比例

AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。

在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。

(4) 影響原作品之潛在市場或價值

報告中點出三項生成式AI訓練可能造成的市場危害。

A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。

B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]

C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]

三、 授權使用

對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]

參、事件評析

AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。

值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。

同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。

美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。

資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

[1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf

[2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19)

[3]supra note 1, at 26.

[4]Id. at 27.

[5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。

[6]Id. at 28.

[7]Id.

[8]Id. at 30.

[9]Id. at 36-37.

[10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。

[11]Id. at 46.

[12]Id.

[13]Id. at 47.

[14]Id. at 48.

[15]Id. at 54.

[16]Id. at 60.

[17]Id. at 65.

[18]Id. at 65-66.

[19]Id. at 66-67.

[20]Id. at 85.

[21]Id. at 106.

[22]Id. at 107.

[23]Id.

本文同步刊登於TIPS網站(https://www.tips.org.tw

※ 美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9352&no=57&tp=1 (最後瀏覽日:2025/10/03)
引註此篇文章
你可能還會想看
澳大利亞聯邦法院作出人工智慧可為專利發明人的認定

  2021年7月30日,澳大利亞聯邦法院做出一項裁定,認為人工智慧(Artificial Intelligence, AI)可作為專利申請案的發明人。   隨著人工智慧的功能不斷演進,人工智慧已經開始展現出創新能力,能獨自進行技術上的改良,此判決中的人工智慧(Device for the Autonomous Bootstrapping of Unified Sentience, DABUS)係由人工智慧專家Stephen Thaler所創建,並由DABUS自主改良出食品容器與緊急手電筒兩項技術。   Thaler以其自身為專利所有人,DABUS為專利發明人之名義,向不同國家提出專利申請,但分別遭到歐盟、美國、英國以發明人須為自然人而駁回申請,僅於南非獲得專利,此案中澳大利專利局原亦是做出駁回決定,但澳大利亞聯邦法院Beach法官日前對此作出裁示,其認為1990年澳大利亞專利法中,並未將人工智慧排除於發明人之外,且專利並不如著作權般強調作者的精神活動,專利更重視創造的過程,其認為發明人只是個代名詞,其概念應具有靈活性且可隨著時間演變,故其認為依澳大利亞專利法,人工智慧亦可作為專利發明人。   該法院的裁定雖是發回澳大利亞專利局重新審核,且澳大利亞專利局仍可上訴,因此DABUS是否能順利成為專利發明人尚有變數,但此案對於人工智慧是否可為發明人已帶來新一波的討論,值得業界留意。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

日本《經濟安全保障推進法》專家小組第1次會議提出「確保特定重要物資穩定供給之基本指導方針」

  2022年7月25日,日本政府召開今年5月公布的《經濟安全保障推進法》專家小組第1次會議,會議提出「確保特定重要物資穩定供給之基本指導方針」(特定重要物資の安定的な供給の確保に関する基本指針),指出在日益複雜的國際情勢及社會經濟結構變化中,自由經濟原則所承擔的風險逐漸增加,在經濟安全問題上,政府應有更多參與和監管,不可過度依賴市場競爭,並明確規定政府應適當指定符合下列4要件之物資為「特定重要物資」: 一、人民生存和經濟活動所必需 指被多數人廣泛使用、融入於各行各業中,在經濟合理的角度觀察,沒有替代品的物資。 二、避免過度依賴外部資源 指資源掌握於特定少數國家或地區,如供應中斷將造成日本境內重大影響者。或基於社會經濟結構變化和技術創新趨勢,是否有如不採取因應措施,可能有過度依存風險之外部資源。 三、因外部行為造成中斷供給的可能性 因外部行為(如供應國暫停出口)導致供應中斷,對人民生活與經濟活動發生重大影響者,包含發生之可能性。 四、除前述3要件外,認有特別必要性時 例如,近年有供應中斷紀錄,或出現供應中斷風險提升的傾向,須立即採取措施時等情形。   此外,日本政府規劃將減少「特定重要物資」對國外的進口依賴,並授權政府可對企業的原物料供應商及庫存進行調查,拒絕者將課以罰責,以確保「特定重要物資」的穩定供應。

日本立法保護及促進重要經濟安全資訊之利用

日本國會2024年5月10日通過、同月17日公布《重要經濟安全資訊保護及活用法》(重要経済安保情報の保護及び活用に関する法律,以下簡稱經安資訊保護法),建立安全許可(セキュリティ・クリアランス)制度,規範政府指定重要經濟安全資訊(以下簡稱經安資訊)、向業者提供經安資訊之方式,以及可近用經安資訊之人員資格等事項,以保護與重要經濟基礎設施有關,外流可能影響國家及國民安全之重要資訊,並同時促進此類資訊之利用。 根據經安資訊保護法規定,行政機關首長得指定機關業務相關之重要資訊,如與關鍵基礎設施、關鍵原物料相關,外洩可能影響經濟安全之資訊為經安資訊。並得於下列情形,向其他行政機關、立法機關及司法機關、特定民間業者提供經安資訊: 1.其他行政機關:有利用經安資訊之必要時。 2.立法機關及司法機關:提供資訊對經濟安全不會有顯著影響時。 3.特定民間業者:為促進有助於經濟安全保障之行為,必要時得依契約向符合保安基準之業者提供經安資訊。 此外,經安資訊保護法進一步規定近用、處理經安資訊者,須通過適格性評價(適性評価),評價重點包括當事人犯罪紀錄、藥物濫用紀錄、有無精神疾病、有無酗酒、信用狀況等。由於上述內容涉及當事人隱私,故行政機關進行適格性評價前,須取得當事人同意。

《加州隱私權法(California Privacy Rights Act, CPRA)》現在備受關注;CCPA修正案

  2020年11月3日,加州於其大選中以公投方式批准通過第24號提案(Proposition 24),該提案頒布《加州隱私權法》(California Privacy Rights Act,以下簡稱CPRA)。CPRA對加州消費者隱私保護法(California Consumer Privacy Act 2018,以下簡稱CCPA)所規定之隱私權進行重要修正,改變了加州的隱私權格局。   CPRA賦予加州消費者新的隱私權利,並對企業施加新的義務,例如消費者將有權限制其敏感性個人資料(例如財務資料、生物特徵資料、健康狀況、精確的地理位置、電子郵件或簡訊內容及種族等)之使用與揭露;消費者有權利要求企業更正不正確的個人資料;CPRA同時修改現有的CCPA的「拒絕販售權」,擴張為「拒絕販售或共享權」,消費者有權拒絕企業針對其於網際網路上之商業活動、應用或服務而獲得的個人資料所進行之特定廣告推播。CPRA亦要求企業對各類別之個人資料,按其蒐集、處理、利用之目的範圍及個人資料揭露目的,設定預期的保留期限標準。   CPRA另創設「加州隱私保護局」(California Privacy Protection Agency)為隱私權執行機構,該機構具有CPRA之調查、執行和法規制定權,改變了CCPA 係由加州檢察長(California Attorney General)負責調查與執行起訴的規定,並規定加州隱私保護局應於2021年7月1日之前成立。    CPRA將在2022年7月1日之前通過最終法規,且自2023年1月1日起生效,並適用於2022年1月1日起所蒐集之消費者資料,隨著CPRA的通過,預期可能促使其他州效仿加州制定更嚴格之隱私法,企業應持續關注有關CPRA之資訊,並迅速評估因應措施。

TOP