美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?
資訊工業策進會科技法律研究所
2025年06月04日
美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。
壹、事件摘要
美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。
生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。
貳、重點說明
一、生成式AI模型訓練及模型權重對重製權之侵害
使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。
在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。
著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。
二、合理使用
對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。
(1) 作品轉化性須視模型目的及佈署判斷
報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。
有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。
(2) 受著作權保護作品之表達性
AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。
(3) 使用作品之合理比例
AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。
在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。
(4) 影響原作品之潛在市場或價值
報告中點出三項生成式AI訓練可能造成的市場危害。
A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。
B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。
C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。
三、 授權使用
對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。
參、事件評析
AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。
值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。
同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。
美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。
資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
[1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf
[2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19)
[3]supra note 1, at 26.
[4]Id. at 27.
[5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。
[6]Id. at 28.
[7]Id.
[8]Id. at 30.
[9]Id. at 36-37.
[10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。
[11]Id. at 46.
[12]Id.
[13]Id. at 47.
[14]Id. at 48.
[15]Id. at 54.
[16]Id. at 60.
[17]Id. at 65.
[18]Id. at 65-66.
[19]Id. at 66-67.
[20]Id. at 85.
[21]Id. at 106.
[22]Id. at 107.
[23]Id.
本文同步刊登於TIPS網站(https://www.tips.org.tw)
大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「城市資料策略」(City Data Strategy),以發展「城市資料市集」為核心的「數位倫敦」(Data for London) 計畫,希望與合作夥伴共同推展「城市資料市集」,以節省資金、培育創新、推動經濟成長,並迎接可能之挑戰。 「數位倫敦」將城市資料分為開放資料(Open Data)、民間企業資料(Private Data)、商業資料(Commercial Data)、感知資料(Sensory Data),及公眾來源資料(crowded-sourced data)等5個類型。此外,蒐集之資料類型及如何使用該等資料,亦為計畫的執行重點之一。 「數位倫敦」之實施計畫(Implementation Plan)分短、中、長期,以近期發布之短、中期的路徑圖而言,大倫敦政府計劃在2年內分 5個階段,從編制資料目錄,建立資料庫聯盟,利用雲端系統建置一能預測並開發、利用新資料來源之資料庫,並以「引用資料,而不複製資料」之原則,持續與公開來源社群及夥伴合作。 「城市資料市集」作為發展大倫敦基礎設施建設之一環,從資料蒐集、過濾檢測、資料庫平台管理、整合平台及服務,進而建立新商業模式,期將倫敦打造成世界首屈一指的智慧城市。
從新加坡IPCF計畫看智財產業人才培育從新加坡IPCF計畫看智財產業人才培育 科技法律研究所 2014年08月29日 壹、前言 在全球化競爭的趨勢下,各國若僅憑國家資本與生產力作為基礎,已難在國際上殺出重圍、嶄露頭角。由此可知,「創意」與「創新」是激化國家競爭力之泉源,而「智慧財產權」則是此泉源之力量匯集,更是提升國家競爭力之強效手段 。 新加坡政府於2013年3月份提出IP (Intellectual Property) Hub Master Plan 10年期計畫[1],目標是成為亞洲智慧產權中心。計畫設有六大策略,本文以下針對【策略五:培育具全球競爭力的IP人力資源,培養其具備IP專業及跨市場的能力,並支援IP專業人員持續增進專業技能】進行觀察。目的在於了解新加坡如何透過IP Competence Framework(以下簡稱IPCF計畫)[2]描述IP產業生態及價值鍊、IP產業的從業角色以及所需能力、最後如何透過訓練增加專業人才數量以及能力,以因應逐漸擴大的IP產業之需求。 貳、重點說明 IPCF計畫內容涵蓋智慧財產領域各個層面,透過IP保護、IP開發、IP實現等規劃,勾勒出IP產業輪廓,使「IP產業」躍身成為獨立產業,突顯其無形資產價值,其工作目標包括[3]: 1. 定義智慧財產權專業人員所需具備之能力,有效發揮其專業能力。 2. 提升智慧財產權訓練課程和認證程序品質。 3. 提供企業規劃員工智慧財產權教育訓練參考依據。 4. 提供智慧財產權人員職業發展和進修準則。 目前,IPCF計畫已完成「IP產業整體輪廓」以及「IP能力標準」建構,並積極將這些工具與概念推廣至產業界,以下詳細說明。 一、IP產業整體輪廓 (IP Industry Map)[4] IPCF定義IP產業包含五個業務領域,分別為智財法律諮詢領域(IP Legal Advisory Pathway)、智財擬定與申請領域(IP Drafting & Prosecution Pathway)、智財技術諮詢領域(IP Technology Advisory Pathway)、IP智能與策略領域(IP Intelligence & Strategies Pathway)、以及IP鑑價和財務規劃領域(IP Valuation & Financial Advisory Pathway)。 每個領域皆涵蓋數個職業角色,並針對每個角色詳細說明其工作定義以及工作內容。例如:智財法律諮詢領域則涵蓋資深智財顧問(Senior IP Counsel) 、首席法務官(Chief Legal Officer)、智財訴訟律師(IP Litigator)、智財調解員(IP Mediator) 等11個工作角色。 相較過去缺乏明確「IP產業定義與範圍」,IPCF以國家角度出發,明確定義IP產業,賦予產業前景構想,再輔以IPWSQ專業證照制度,讓智財專業人力擁有執業正當性,這對於形塑新興產業是重要的政策工具。 二、IP能力標準(Standards) IPCF建構IP產業需要的智權能力標準,分為六大類,分別為IP研究、IP保護、IP財務、技術育成、IP利用以及IP執法。在大類之下,再細分能力標準,目前共列出78項智權能力鑑定項目(會隨著IP產業進步與成熟,繼續增加新項目)。 以上能力標準除了提供智財從業者以及產業界使用之外,並與新加坡勞動發展局合作,使其成為IP職能認證項目(IP Workforce Skills Qualifications,以下簡稱IP─WSQ)[5]。再透過IP Academy這個已取得認證的輔導單位開授相關課程,完成授課並通過測試,可取得IP─WSQ的職能認證證書。 承上,新加坡政府希望透過IPCF計畫達成智財產業人才培育,正向影響智財產業,因此,新加坡智財局亦與律師、專利代理人、專業管理師、以及工程師相關協會簽屬合作聲明書[6],這些產業協會承諾將IP產業輪廓以及IP-WSQ置入協會規範中,成為這些專業人士將來領證、換證、教育訓練、能力鑑定的參考依據。 參、事件評析 總結而言,IPCF透過IP─WSQ方式,提高IP人員對於專業知識的認知,使其有明確學習目標,更可提供IP人員專業認證證明,提升其專業形象與競爭力。而對於企業而言,企業亦可透過智權能力標準檢視內部智財能力以及缺口,也可善用IPCF認證單位的培訓課程,彌補員工的能力缺口。 在作法上,IPCF透過與新加坡勞動局合作,善用WSQ原有的職能開發流程[7],建構IPWSQ,首先界定IP產業,然後再界定IP能力標準項目,然後組合不同能力標準,制定課程,通過課程以及審查的學員,最後獲頒職能認證。由此可知,新加坡政府跨部門合作開發新制度,可以運用過去原有的標準工作模式,以服務新政策或新產業需求,這是值得借鏡之處。 IPCF在短短一年多時間就完成IP產業輪廓以及IP能力指標,並使指標成為IPWSQ的智能認證標準,並與律師、專利代理人、工程師、專案管理師協會合作,共同推展此架構,從中可發現新加坡政府的魄力以及行政效率。 [1] IP HUB MASTER PLAN:Developing Singapore as a Global IP Hub in Asia http://www.ipos.gov.sg/Portals/0/Press%20Release/IP%20HUB%20MASTER%20PLAN%20REPORT%202%20APR%202013.pdf [2] IPCF官方網站http://www.ipos.gov.sg/IPforYou/IPforProfessionals/MatchingyourIPCompetencytoyourIPcareer/IPCompetencyFrameworkIPCF.aspx(最後瀏覽日2014/08/28) [3] IPCF目標http://www.ipos.gov.sg/IPforYou/IPforProfessionals/MatchingyourIPCompetencytoyourIPcareer/IPCompetencyFrameworkIPCF/AboutTheIPCF.aspx (最後瀏覽日:2014/08/28) [4] IP產業整體輪廓 http://www.ipos.gov.sg/ipcf/TheIPCF.aspx (最後瀏覽日:2014/08/28) [5] IPWSQ內容說明 http://www.wda.gov.sg/content/wdawebsite/L207-AboutWSQ/L301-WSQIndustryFramework-BusinessManagement/L401-013BusinessManagement.html?QualName=Modules%20for%20Intellectual%20Properties%20%28IP%29%20Management (最後流覽日2014/08/29) [6] 新加坡智財局目前與四家產業協會簽定合作聲明書(MOU),包括代表律師的The Law Society of Singapore(Law Soc)、代表專利代理人的Association of Singapore Patent Agents(ASPA)、代表工程師的Institution of Engineering Singapore (IES)、以及代表專案管理師的The Singapore Business Advisors & Consultants Council (SBACC)。http://www.ipos.gov.sg/MediaEvents/Readnews/tabid/873/articleid/271/category/Press%20Releases/parentId/80/year/2014/Default.aspx(最後瀏覽日2014/08/28) [7] WSQ流程需先界定產業,然後再界定能力標準,然後組合不同能力標準,制定課程,通過審查之後,就可以頒授職能認證。WSQ流程圖請參考WSQ官網 http://www.wda.gov.sg/content/wdawebsite/L207-AboutWSQ.html(最後瀏覽日2014/08/28)
加拿大聯邦上訴法院判決無實體酒店仍得就酒店服務註冊商標加拿大聯邦上訴法院於Miller Thomson LLP v. Hilton Worldwide Holding LLP案指出,儘管企業在加拿大未設立實體店面,但如在加拿大有提供與該實體店相關聯的服務,仍可就其服務使用該企業之商標。 該案背景為希爾頓集團(Hilton Worldwide Holding)在加拿大未有華爾道夫酒店(Waldorf Astoria)的實體店,卻將WALDORF ASTORIA(下稱系爭商標)於加拿大註冊用於「酒店服務」。對造Miller Thomson欲在加拿大註冊「WALDORF」、「THE WALDORF」、「WALDORF HOTEL」等類此名稱的商標,遭希爾頓集團反對。Miller Thomson為此主張商標註冊官應命希爾頓集團依商標法第45條規定,提出有在加拿大使用系爭商標的證明。希爾頓集團指出,系爭商標有使用於全球預訂、付款服務,且加拿大客戶為忠誠會員亦有獎勵積分等。然而,商標註冊官以先前Motel 6 Inc. v. No. 6 Motel Ltd. [1982] 1 FC 638 (FCTD) (“Motel 6”)判決,與加拿大商標異議委員會(Trademarks Opposition Board,TMOB)Stikeman Elliott LLP v. Millennium & Copthorne International Ltd., 2015 TMOB 231 (“M Hotel”) and Maillis v Mirage Resorts Inc, 2012 TMOB 220等案,認為須由實際位於加拿大的酒店,始能提供酒店服務,遂撤銷系爭商標的註冊。 經希爾頓集團提起訴訟後,聯邦上訴法院認為商標法未有「服務」的定義,因此有無使用商標,認定方式應符合現代的商業慣例。聯邦上訴法院指出,無論企業提供的是主要服務、附帶服務或輔助服務,只要消費者從中獲得實質利益,即代表企業已實現其服務。準此,華爾道夫酒店在加拿大雖僅有預訂、付款服務,屬於附帶或輔助服務,但若消費者有因系爭商標的原因,而願意在加拿大利用華爾道夫酒店提供的附帶或輔助服務,並從中獲得利益,則可認定系爭商標有在加拿大被使用。 該判決的重要性在於確立即便在加拿大無實體存在,商標權人仍可將商標與其服務結合,但聯邦上訴法院提醒,僅在加拿大境外在網站上顯示商標,尚不足證明該商標有使用於所註冊的服務。此外,商標若結合於網路服務使用,則商標人與加拿大消費者間須有足夠程度的互動,因此,商標權人為了持續受商標法的保護,有必要詳細記錄業經註冊商標的使用情況,俾利在發生爭議時,有證據資料得以佐證。
日本IPA/SEC公佈「IoT高信賴化機能編」指導手冊日本獨立行政法人情報處理推進機構(IPA/SEC)於2016年3月公佈「聯繫世界之開發指引」,並於2017年5月8日推出「IoT高信賴化機能編」指導手冊,具體描述上開指引中有關技術面之部份,並羅列開發IoT機器、系統時所需之安全元件與機能。該手冊分為兩大部份,第一部份為開發安全的IoT機器和關聯系統所應具備之安全元件與機能,除定義何謂「IoT高信賴化機能」外,亦從維修、運用角度出發,整理開發者在設計階段須考慮之系統元件,並依照開始、預防、檢查、回復、結束等五大項目進行分類。第二部份則列出五個在IoT領域進行系統連接之案例,如車輛和住宅IoT系統的連接、住家內IoT機器之連接、產業用機器人與電力管理系統之連接等,並介紹案例中可能產生的風險,以及對應該風險之機能。IPA/SEC希望上開指引能夠作為日後國際間制定IoT國際標準的參考資料。