美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?
資訊工業策進會科技法律研究所
2025年06月04日
美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。
壹、事件摘要
美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。
生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。
貳、重點說明
一、生成式AI模型訓練及模型權重對重製權之侵害
使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。
在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。
著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。
二、合理使用
對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。
(1) 作品轉化性須視模型目的及佈署判斷
報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。
有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。
(2) 受著作權保護作品之表達性
AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。
(3) 使用作品之合理比例
AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。
在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。
(4) 影響原作品之潛在市場或價值
報告中點出三項生成式AI訓練可能造成的市場危害。
A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。
B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。
C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。
三、 授權使用
對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。
參、事件評析
AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。
值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。
同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。
美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。
資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
[1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf
[2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19)
[3]supra note 1, at 26.
[4]Id. at 27.
[5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。
[6]Id. at 28.
[7]Id.
[8]Id. at 30.
[9]Id. at 36-37.
[10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。
[11]Id. at 46.
[12]Id.
[13]Id. at 47.
[14]Id. at 48.
[15]Id. at 54.
[16]Id. at 60.
[17]Id. at 65.
[18]Id. at 65-66.
[19]Id. at 66-67.
[20]Id. at 85.
[21]Id. at 106.
[22]Id. at 107.
[23]Id.
本文同步刊登於TIPS網站(https://www.tips.org.tw)
為展現對高科技產業的重視,即將於4月1日舉行之行政院科技顧問會議年度會議,會議重點將鎖定「科技人才發展」與「下世代網路環境建構」。在「科技人才發展」方面,林政委逢慶表示,科技人才發展攸關台灣科技核心競爭力,政府必須進行中、長期人才資源規劃運用,放眼到2015年,政府將持續積極推展延攬海外科技人才的計畫;在替代役條例修正納入研發替代役後,未來投入科技的役男員額,將從目前國防訓儲每年3,500名逐年放寬到1萬人。 另外,政府將在五年內提撥近320億元,發展軟性電子、RFID(無線射頻)、奈米科技、智慧型機器人、智慧化車輛、智慧化居住空間等六大策略性生活科技產業,今年將先提撥58億元投資這些策略性產業上。此外 行政院科技顧問對於發展台灣成為全球奈米研發中心有高度期許,近日亦在行政院科技會報中確認,今年起到2010年的五年內,將投入200億元於奈米科技生活化相關產業上。這是行政院產業科技策略會議所訂六大策略性科技產業中,編列預算最大的一筆。
德國機器人和人工智慧研究人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。 德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。 解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
美國網紅控訴前員工竊取其成功經營社群媒體之機密計算公式美國J. Cathell公司於2022年12月21日以《保護營業秘密法》(Defend Trade Secrets Act of 2016)、《喬治亞州營業秘密法》(The Georgia Trade Secrets Act)控訴前員工Martin侵害其營業秘密「設計社群媒體發文及服裝策畫計算公式」。 J. Cathell公司是知名引領潮流、設計與旅遊的網紅兼部落客Jess Cathell所成立,其個別社群媒體皆有上千、萬名之追蹤者。其所經營之J. Cathell公司透過Instagram(@j.cathell)與網站(www.jcathell.com)提供前往特定目的地旅遊而設計的服裝,亦融合特定風格與特殊活動,同時提供販售連結。另有經營Facebook(J. Cathell Facebook)、Pinterest(J. Cathell Pinterest)、Like To Know It(下簡稱LTK)(J. Cathell LTK)等社群媒體。該服裝與風格設計是由Jess Cathell針對其客群研析出專屬、非公開之計算公式(營業秘密)所得出之結果。 被告Martin自2020年9月起任職於J. Cathell公司、擔任Jess Cathell的助理。Jess Cathell主張其提供Martin專屬計算公式之使用權限,並投注大量成本教導如何運用計算公式詮釋服裝策畫結果、設計社群媒體發文內容。前述資訊對J. Cathell公司皆具有獨立之實際或潛在經濟價值、他人亦可因被揭露之資訊,或使用該資訊而獲利。 Jess Cathell主張僅有自己、Martin能接觸專屬計算公式,並運用該公式產出設計社群媒體發文及服裝策畫結果。Jess Cathell為了保密,不曾以紙本記錄留存專屬計算公式相關資訊;用於追蹤銷售與其他績效指標的系統,皆以帳號、密碼保護。而Martin知悉該密碼,且於Martin任職期間多有提醒前述資訊之秘密性,Martin針對這些資訊具有保密義務。 Jess Cathell於2022年4月左右,發現WEAR TO WANDER公司(下簡稱WTW公司)成立Instagram、Pinterest、Facebook、LTK等帳號與WTW公司網站,於前述社群媒體發文的格式及概念,與J. Cathell公司於社群媒體發布的內容幾乎相同,並於同年8月發現Martin是WTW公司的創立者。Jess Cathell主張因Martin、WTW公司不當使用其營業秘密「設計社群媒體發文及服裝策畫計算公式」,在短短11個月內,WTW公司的Instagram即獲得近9萬名追蹤者,造成J. Cathell公司之財務與競爭損害,遂於同年12月向法院提出營業秘密侵害訴訟。 本案為首件社群媒體經營產業相關之營業秘密訴訟案件,後續判定將值得關注。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國隱私保護機構指稱Facebook實名制違法Facebook之實名制政策禁止用戶使用假名,此一行為已遭德國隱私保護機構禁止。德國Schleswig-Holstein邦的資料保護中心組織(Office of the Data Protection Commissioner,簡稱ULD)控訴臉書「實名制」已違反德國電信媒體法(Telemediengesetz)。依據德國「電信媒體法」規定,只要匿名的使用具有技術上之合理性及可行性時,服務供應商必須允許用戶採用假名,惟Facebook的實名制政策卻禁止用戶使用假名。資料保護中心表示,Facebook要求用戶註冊時須填入真實姓名,違反德國電信媒體法第13條第6項。ULD表示,為確保網路用戶權利及遵守網路保護法,臉書應立即終止實名制的執行。Facebook發言人則對ULD指控不以為然,主張「服務供應商有權在現行法律下自行決定所採取之匿名政策」,並表示Facebook採取實名制係為保護社群安全,若發現用戶使用假名將刪除帳號。Facebook發言人認為「這只是在浪費德國納稅人的金錢!此法律之指控毫無意義,同時我們也將據理力爭。」Facebook認為,實名制是該網站經營之重要機制,除了能與其他社群網站做出明顯的市場區隔外,更能積極保護用戶的個人資料。