日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。
《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下:
(一) 提出假說、驗證並進行決策
首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。
(二) 判斷決策所必要之資料的信賴性
企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。
(三) 服務導入與監視
資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。
我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
根據歐盟條約,國家補助的行為原則上為條約所禁止,例外須經歐盟執委會核准。為使會員國得以事先瞭解哪些行為會被認為符合共同市場的精神,歐盟執委會在11月22日針對國家補助規則,通過了「研究發展與創新綱要架構」(Community framework for state aid for research and development and innovation,以下簡稱為R&D&I Framework),期能加速此類案件的審理效率。新綱要架構規定預計自2007年1月1日起開始生效適用。 根據新的綱要架構,會員國在規劃其國家補助措施之際,仍有義務通知執委會,經執委會確認或核准後,始符合歐盟相關法制。不過執委會認為,會員國在規劃國家補助措施時,如能依循綱要架構的指導說明,將可加速執委會的作業,提升審查效率。 過去僅有研發補助可例外被認為符合歐盟條約之精神,惟根據新的綱要架構,除了研發補助以外,創新補助亦是可以獲得豁免管制者。此外,綱要架構對特定有助於研究發展與創新的國家補助措施類型,提供了詳細的指導原則說明,這類國家補助措施可以帶動私人企業的研發與創新投資,有助於經濟成長與就業,因而可提升歐盟的競爭力。 R&D&I Framework同時也允許會員國視其國內發展狀況與特殊條件,設計符合該國之補助措施,前提是要符合可矯正特定市場失靈的檢視要件,且其所設計的措施可能帶來的優惠超出補助對競爭可能造成之損害。 另新綱要架構也指出阻礙研發與創新的主要市場失靈的因素如下:知識外溢(knowledge spill-overs)的效果有限、資訊不足與不對稱(imperfect and asymmetric information)、缺乏協調與網絡建構(coordination and network failures)。此外,新綱要架構中亦針對各類行的國家補助措施,逐項為會員國解說如何妥善運用,以符合補助規則(state aid rules)。這些政策措施如下: ●研發計畫(aid for R&D projects); ●技術可行性之補助研究(aid for technical feasibility studies); ●對中小型企業智慧財產權費用給予補助(aid for industrial property right costs for SMEs); ●對新創事業提供補助(aid for young innovative enterprises); ●對服務流程及組織功能創新所提供之補助(aid for process and organisational innovation in services); ●對智慧財產提供諮詢或支援服務之補助(aid for innovation advisory services and for innovation support services); ●對中小型企業因晉用高級專業人員所需之貸款提供融資的補助(aid for the loan of highly qualified personnel for SMEs); ●對創新育成事業提供的補助(aid for innovation clusters)。 新的綱要架構同時希望可以改善歐盟對國家補助的管控機制,集中資源於管理對可能破壞競爭的案件,故綱要架構對於具有高度破壞競爭與交易風險的鉅額案件,詳細說明了執委會如何進行個案評估。
英國政府提交予國會「人工智慧監管規範政策報告」英國政府由數位文化媒體與體育大臣(Secretary of State for Digital, Culture, Media and Sport)與商業能源與工業策略大臣(Secretary of State for Business, Energy and Industrial Strategy)代表,於2022年7月18日提交予國會一份「人工智慧監管規範政策報告」(AI Regulation Policy Paper)。內容除定義「人工智慧」(Artificial Intelligence)外,並說明未來政府建立監管框架的方針與內涵。 在定義方面,英國政府認為人工智慧依據具體領域、部門之技術跟案例有不同特徵。但在監管層面上,人工智慧產物則主要包含以下兩大「關鍵特徵」,造成現有法規可能不完全適用情形: (1)具有「適應性」,擅於以人類難以辨識的意圖或邏輯學習並歸納反饋,因此應對其學習方式與內容進行剖析,避免安全與隱私問題。 (2)具有「自主性」,擅於自動化複雜的認知任務,在動態的狀況下持續判斷並決策,因此應對其決策的原理原則進行剖析,避免風險控制與責任分配問題。 在新監管框架的方針方面,英國政府期望所提出的監管框架依循下列方針: (1)針對技術應用的具體情況設計,允許監管機構根據其特定領域或部門制定和發展更詳細的人工智慧定義,藉以在維持監管目標確定與規範連貫性的同時,仍然能實現靈活性。 (2)主要針對具有真實、可識別與不可接受的風險水準的人工智慧應用進行規範,以避免範圍過大扼殺創新。 (3)制定具有連貫性的跨領域、跨部門原則,確保人工智慧生態系統簡單、清晰、可預測且穩定。 (4)要求監管機構考量更寬鬆的選擇,以指導和產業自願性措施為主。 在跨領域、跨部門原則方面,英國政府則建議所有針對人工智慧的監管遵循六個總體性原則,以保障規範連貫性與精簡程度。這六個原則是基於經濟合作暨發展組織(OECD)的相關原則,並證明了英國對此些原則的承諾: 1.確保人工智慧技術是以安全的方式使用 2.確保人工智慧是技術上安全的並按設計運行 3.確保人工智慧具有適當的透明性與可解釋性 4.闡述何謂公平及其實施內涵並將對公平的考量寫入人工智慧系統 5.規範人工智慧治理中法律主體的責任 6.釋明救濟途徑 除了「人工智慧監管政策說明」外,英國政府也發布了「人工智慧行動計畫」(AI Action Plan)文件,彙整了為推動英國「國家人工智慧策略」(National AI Strategy)而施行的相關行動。前述計畫中亦指出,今年底英國政府將發布人工智慧治理白皮書並辦理相關公聽會。
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).