2025年11月5日,歐盟執委會啟動《標示與標籤人工智慧生成內容之行為準則》(a code of practice on marking and labelling AI-generated content,下稱行為準則)之相關工作,預計將於2026年5月至6月間發布行為準則。此行為準則與《歐盟人工智慧法案》(EU AI Act)之透明度義務規定相關。這些規定旨於透過促進對資訊生態系的信任,降低虛假訊息、詐欺等風險。
《歐盟人工智慧法案》第50條第2項及第4項之透明度義務,分別規定
1. 「『提供』生成音檔、圖像、影片或文本內容的AI系統(包括通用AI系統)」的提供者(Providers),應確保其輸出係以機器可讀的形式標示(marked),且可被識別屬於AI所生成或竄改(manipulated)的內容。
2. 「『使用』AI系統生成或竄改以構成深度偽造之影像、音訊或影片內容」的部署者(Deployers),應揭露該內容係AI所生成或竄改。
前述透明度義務預計於2026年8月生效。
後續由歐盟AI辦公室之獨立專家透過公眾資訊與徵選利害關係人意見等方式,推動起草行為準則。此行為準則不具強制性,旨於協助AI系統提供者更有效地履行其透明度義務,且可協助使用深偽技術或AI生成內容的使用者清楚地揭露其內容涉及AI參與,尤其是當向公眾通報公共利益相關事項時。
AI應用蓬勃發展,同時AI也可能生成錯誤、虛構的內容,實務上難以憑藉個人的學識經驗區分AI幻覺。前文提及透過標示AI生成的內容,以避免假訊息孳生。倘企業在資料源頭以標示等手段控管其所使用之AI的訓練資料,確保資料來源真實可信,將有助於AI句句有理、正向影響企業決策。企業可以參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,從資料源頭強化數位資料生命週期之管理。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國猶他州州長柯克斯(Spencer Cox)於2023年3月23日簽署參議院152號法案(社群媒體規則修正案,Social Media Regulation Amendments)與眾議院311號法案(社群媒體使用修正案,Social Media Usage Amendments)等兩項法案,此舉是為了因應美國青少年日益沉迷社群媒體的問題,降低網路霸凌、剝削與未成年人個資外洩之風險。新法預計於2024年3月1日生效,兩項法案所提列之重點如下: 一、參議院152號法案針對社群媒體業者,要求其對於社群媒體應用程式之用戶,應採取以下措施: 1. 對於想要創設或持有社群媒體帳號之猶他州居民,須驗證其年齡。 2. 未滿18歲的用戶,須獲得父母或監護人的同意。 3. 允許家長有查看未滿18歲子女帳號內容之權限。 4. 訂定宵禁機制,於夜間(晚上10:30至早上6:30)禁止未成年登入使用帳號,但家長可視情形調整。 5. 禁止未成年用戶,向未曾關注或加好友的陌生人直接發送訊息。 6. 須於搜尋引擎中隱藏未成年人帳號。 7. 若違反上述內容,每項違反處以業者2,500美元之民事罰款。 二、眾議院311號法案針對「有使用導致未成年人成癮(Addiction)於社群媒體之設計或功能」之業者,訂定以下相關裁罰: 1. 經證明會導致未成年人對社群媒體成癮之行為、設計或功能,針對每項行為、設計或功能,處以業者25萬美元之民事罰款。 2. 若使未成年人接觸而致其成癮者,依未成年人數計算,每位最高可罰款2,500美元。 3. 允許父母得以其未成年子女因成癮致其身體、情感與財產上之損害為由,起訴社群媒體業者。 4. 若為未滿16歲之用戶依本法請求損害賠償者,媒體業者將推定過失責任,亦即由業者負舉證責任。 兩項法案皆是為保護美國18歲以下的未成年人,要求IG、TikTok、Twitter、Facebook等社群媒體一定作為與不作為之義務,若有違反情形,猶他州商務部消費者保護司(DCP)有權限對其違規行為處以民事罰款。上述美國法案針對未成年之保護,以透過規定使平臺業者設計出更優質、更完善的程式介面之觀點,可作為我國未來針對社群媒體監管措施之借鏡與觀察。
美國FDA公告食品營養強化物添加之指導原則添加營養素到一般之食物中,對於維持或增進整體食物之營養品質來說,是一個非常有效率之方式。然而,不當添加或濫用這些外加之營養素,卻可能造成消費者過度或不足攝取某些特定之營養成分,甚至更可能造成某些食物之營養價值有誤導或詐騙消費者之嫌。 美國食品藥物管理局(Food and Drug Administration,以下簡稱FDA)為了統一回應食品廠商、其他聯邦主管機關以及相關學會之問題,針對添加到食物中之必需營養補充品,在2015年11月6日公告了一份指導原則(Questions and Answers on FDA’s Fortification Policy)。本指導原則以Q&A之形式呈現,,列出FDA對於食品營養強化物(Fortification of Foods)政策之態度(並未變更其自1980年代以來對於食品營養強化物之向來立場)以及建議遵循規定。 FDA建議食品營養強化物添加之基本原則如下:校正飲食之缺陷;補充因食物於處理、流通之過程中所喪失之營養素;根據食物整體熱量計算之結果,均衡添加各種食品營養強化物等。 本指導原則僅適用於人類使用之食品,動物用食品並不在其建議範圍內;另外,其亦不適用於嬰幼兒配方或是一般之保健營養品,其僅適用於一般常規之食物,例如:牛奶、果汁、豆漿、麥片、麵包、通心粉、乳瑪琳等。但是要注意,針對一些新鮮的食物或本身即非營養的食物,例如:新鮮蔬菜、魚肉類、糖、甜點、碳水化合物等,並不建議再額外添加食品營養強化物。 另外,只有人體所必須的營養素(essential nutrients)才可額外添加到常規的食品中,亦即所有添加物都須依據膳食營養素參考攝取量(Reference Daily Intakes;RDI)所規定之種類及建議量,做適當的添加;且添加物必須合法且安全。 食品營養強化物之標示,則必須依據食品標示相關法規恰當為之,不可出現會誤導消費者的任何詞彙,也不宜做出任何可以預防營養素缺乏之陳述,因為這麼做可能使消費者誤認有添加物的食品其營養成分較原始食物高。 本指導原則對廠商並無強制力,然要是廠商有違反本指導原則之情形,FDA將會發出警告信,顯示出FDA強烈建議廠商遵守本指導原則之決心。
歐盟發布資料法案草案2022年2月23日,歐盟委員會(European Commission,以下簡稱委員會)公開資料法案草案(Data Act,以下簡稱草案),基於促進資料共享的目的,草案其中一個目標是使不同規模的企業、用戶在資料利用上有著更加平等的地位,內容包含確保用戶資料可攜性、打破資料存取限制、推動大型企業的資料共享,扶植微/小型企業等幾大方向。 以下就草案對大型企業要求的義務切入,說明草案所帶來的影響: 確保用戶訪問資料的權利: 基本資訊的告知,包含所蒐集資料性質以及訪問方式、使用資料的目的;用戶可在不同產品/服務提供者(以下簡稱提供者)之間切換,且提供者須有技術支援;提供者需要有合理技術,避免資料在未經授權被查閱。 對於提供者的限制: 提供者不得將所蒐集的資料用於取得用戶的經濟地位、資產、使用喜好;具守門人性質的企業不得採取獎勵措施以鼓勵用戶提供自其他提供者處所取得的資料;提供者提供資料可以收取補償,但必須以公平、合理、非歧視、透明的方式為之,需要提供補償計算方式與基礎。 對於微/小/中型企業的保護 提供者對於微/小型企業所收取的資料補償,不得超過提供資料所需的成本;提供者利用市場優勢,對於微/小/中型企業的不合理/公平的約定無效(如單方面免除一方的重大過失/故意行為的責任)。 該資料法案草案須經歐盟議會(European Parliament)通過後才會生效,目前草案規定只要有在歐盟提供物聯網產品或服務之企業,就須遵守草案內容規範,考量到網路服務可跨國提供服務,草案規範與進度仍值得國內企業關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。