美國發布2012「更佳建築倡議」計畫進度報告

  美國於2011年2月份啟動「更佳建築倡議」(Better Building Initiative)計劃,期在2020年達成降低工業和商業之能源密集度百分之二十的目標。展望2013年,美國能源部於2012年底發布該倡議之進度報告(Progress Report)。報告開宗明義指出若干有礙建築能源效率之投資障礙,擬如下: (1) 尚缺少能源效率投資成本節省之實證數據 (2) 尚缺少潛在市場和技術解決方案之相關資訊 (3) 能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部致力於發展以下策略: (1) 創新產業研發 (2)促進能源效率投資 (3) 培育清潔能源之技術人員 (4) 強化聯邦公部門示範作用。

 

  在創新產業研發面向,能源部成立「更佳建築聯盟」(Better Buildings Alliance),此乃結合零售、食品、商業房地產、醫療照護、高等教育產業,預計於2013年將擴大到州和地方層級;聯盟成員將承諾設定節能目標,擇定高效率之建築科技進行採購。其次,在促進能源效率投資上,報告指出,因市場尚缺乏相關數據資訊(data information),難就能源效率之市場價值(value)進行驗證;將建立起相關機制,作為未來融資和建築物改善的基礎。最後,在強化公部門示範作用上,透過聯邦能源管理計畫(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。

 

  綜上,可得知建築能源效率數據資訊之欠缺乃目前美國能源部在推展「更佳建築倡議」面臨的最大問題。查美國國會於2012年12月初通過「美國製造業能源技術修正法案」(American Energy Manufacturing Technical Corrections Act),就前述聯邦能源管理計畫(FEMP)和資料蒐集標準(Data Collection)進行規範,相關法制政策趨勢殊值注意。

相關連結
※ 美國發布2012「更佳建築倡議」計畫進度報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=5977 (最後瀏覽日:2024/06/14)
引註此篇文章
你可能還會想看
歐盟公布人工智慧白皮書

  歐盟執委會於2020年2月19日發表《人工智慧白皮書》(White Paper On Artificial Intelligence-A European approach to excellence and trust)指出未來將以「監管」與「投資」兩者並重,促進人工智慧之應用並同時解決該項技術帶來之風險。   在投資方面,白皮書提及歐洲需要大幅提高人工智慧研究和創新領域之投資,目標是未來10年中,每年在歐盟吸引超過200億歐元關於人工智慧技術研發和應用資金;並透過頂尖大學和高等教育機構吸引最優秀的教授和科學家,並在人工智慧領域提供世界領先的教育課程。   而在監管方面,白皮書提到將以2019年4月發布之《可信賴之人工智慧倫理準則》所提出之七項關鍵要求為基礎,未來將制定明確之歐洲監管框架。在監管框架下,應包括下列幾個重點:1.有效實施與執行現有歐盟和國家法規,例如現行法規有關責任歸屬之規範可能需要進一步釐清;2.釐清現行歐盟法規之限制,例如現行歐盟產品安全法規原則上不適用於「服務」或是是否涵蓋獨立運作之軟體(stand-alone software)有待釐清;3.應可更改人工智慧系統之功能,人工智慧技術需要頻繁更新軟體,針對此類風險,應制定可針對此類產品在生命週期內修改功能之規範;4.有效分配不同利害關係者間之責任,目前產品責任偏向生產者負責,而未來可能須由非生產者共同分配責任;5.掌握人工智慧帶來的新興風險,並因應風險所帶來之變化。同時,白皮書也提出高風險人工智慧應用程式的判斷標準與監管重點,認為未來應根據風險來進行不同程度之監管。執委會並透過網站向公眾徵求針對《人工智慧白皮書》所提出建議之諮詢意見,截止日期為2020年5月19日。

行動定位服務中的位置資料隱私保護

美國推動L Prize獎勵創新節能照明產品技術研發

  美國能源部依據「2007年能源獨立與安全法案」(The Energy Independence and Security Act (EISA) of 2007)第655條規定,設立Bright Tomorrow Lighting Prize (L Prize)競賽,這是第一個由美國政府所發起的科技競賽。此一規定係依據「2005年能源政策法」(Energy Policy Act of 2005)第1008條而來,賦予能源部對於與其政策目的相關、有重大貢獻的科技研發或商業應用,得設置競賽活動並提供獎金。因此,為了促進照明產業的發展,而固態照明(solid-state lighting)科技是具有潛力能減少照明能源的使用以達解決氣候變遷的方式之一,因此能源部希望在固態照明技術的研發上扮演催化者的角色,藉由此一競賽來刺激研發超效能固態照明產品以取代傳統照明設備。   此一規定對工業的發展造成挑戰,因為將會取代兩種日常生活所使用的產品:60W白熾燈泡與PAR 38滷素燈泡。於2008年5月首先展開的是60W白熾燈泡領域,因為此種燈泡是消費者最普遍使用的,約佔美國國內白熾燈泡市場的一半。要獲得此獎項的要求,必須該替代產品要能使用低於10W的電力,節省83%的能源。該競賽已於2011年8月結束,由Philips Lighting North America所研發的高效能LED產品獲得,除頒發一千萬美元的獎金外,亦已與聯邦政府簽署採購合約。該產品預計於2012年春於零售商店上架。   L Prize的第二階段競賽於2012年3月展開,希望針對PAR 38滷素燈泡領域,鼓勵企業研發LED替代產品,來取代通常使用於零售商店或戶外安全照明的聚光燈和探照燈等傳統PAR 38滷素燈泡。此一競賽獎勵對於全美的照明產業是相當好的挑戰,不僅能研發出創新、具有高效能的產品,亦能提升美國製造業的競爭力。目前全美國約有九千萬個PAR 38滷素燈泡,若能以高效能燈泡取代,能源部預估每年可以節省約11terawatt-hours的電力,並可減少七百萬噸的碳排放。   要贏得L Prize的產品必須通過嚴格的測試,包括其性能、品質、壽命、價格及是否適合量產等。由於在PAR 38滷素燈泡領域,至少必須製造50%的LED燈泡,且所有的組裝都須在美國完成,因此同時亦提供相當多的工作機會。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP