Ofcom致力落實歐盟推動的「高速寬頻」(Superfast Broadband)發展,讓英國在2015年成為全歐洲寬頻發展最為優秀的國家,故於近期重新檢視固網市場的管制架構,促使資通訊市場健全發展。其中,今年7月Ofcom針對「加速超高速寬頻競爭」與「銅絞線網路批發價」(copper network)提出新的諮詢(Consultation),以加速基礎建設投資與提高市場競爭,讓消費者取得合理資、通訊服務。
在加速超高速寬頻市場競爭上,Ofcom除了要求Openreach面對其他競爭者要求協助安裝、維修BT的網路時,必須加快速度與品質外,BT與其他網路業者所簽訂的「批發契約」(Wholesale Contract),時限亦從現行1年縮短至1個月,以增加公平性。除此之外,消費者目前在更換高速寬頻業者時,新業者皆須付Openreach 50歐元轉換費,但這筆費用卻通常轉嫁至消費者,故Ofcom未來將降其至10~15歐元,降低民眾負擔。Ofcom這次要求BT合理化服務品質與費用,摒棄對光纖租用進行價格管制,其原因在於BT確實受到Virgin Media與其他業者的競爭、以及防範管制後BT不願再進行鋪設光纖之可能。這種透過降低消費者轉換網路服務業者之門檻,促進高速寬頻普及的方式是否可行,則須待進一步的觀察。
另一方面,在銅絞線的批發價上,Ofcom依據固網接取市場諮詢(Fixed Access Market Review Consultation)之結果,證明BT在寬頻市場仍具有顯著市場力量(Significant market power),故將對銅絞線批發價重新審議。目前,Ofcom在批發服務之價格上限,將透過消費者物價指數(Consumer price Index ,CPI)取代過去的零售物價指數(Retail Price Index , RPI),讓全迴路(Fully unbundled line)、分享式迴路(Shared unbundled line),或是批發線路出租(wholesale line rental)之接取費用皆可降低,讓消費者可獲得更為合理的價格。
Ofcom於今年10月提出年度「基礎設施報告」(Infrastructure Report update)。其中,在固網建設的發展上,無論是高速寬頻使用度、或是網路總流量,皆較2012年成長。因此,Ofcom是否可透過降低銅絞線的批發價、以及降低消費者轉換服務業者門檻的方式,提升高速寬頻涵蓋率與網路品質,讓消費者的需求得以滿足,將是英國資通訊環境未來發展的關鍵。
韓國科學技術評估暨規劃研究院(Korea Institute of S&T Evaluation and Planning, KISTEP)於2023年5月3日發布〈強化企業創新活動之研發租稅優惠政策研究:以國家戰略技術研發企業為中心〉(A Study on R&D Tax Support Policy for Enhancing Corporate Innovation Activities:Focusing on National Strategic Technology R&D Firms,下稱本報告),提供政府擴大研發租稅優惠政策之建議,分述如下: (1)擴大適用稅額抵減之技術領域 為強化競爭力,各國陸續鎖定重要技術產業,擴大研發租稅優惠政策,故本報告建議韓國政府就稅額抵減範圍,從3大領域(半導體、蓄電池與疫苗),擴大至12大國家戰略技術領域,進而增加民間企業之研發補助。 (2)擴大適用研發稅額抵減之對象 由於韓國目前適用研發稅額抵減之對象,不包括負責研發之新創企業負責人及管理階層,故本報告建議韓國應考量稅額抵減制度之效果與制度公平性,擬定一套新方案,擴大可享受稅額抵減優惠的對象。 (3)調高中大型企業之稅額抵減率 本報告指出,激進式創新及專利被引證次數高的創新技術研發,大多由中堅企業及大企業所主導,故建議應研擬一套以中堅企業與大企業為對象,大幅調高可抵減稅額比率之方案。 (4)透過政策組合(Policy mix)以提高政策效益 本報告指出,當企業獲得研發補助時,其研發稅額抵減效果更為顯著,故建議政府研擬以企業為對象,採用研發稅額抵減與補助並行之優惠方式。 (5)集中對技術水準高的企業提供租稅優惠 本報告指出,研發稅額抵減效果侷限於技術水準高的企業。換言之,與將租稅優惠分散給予各企業,不如選定具有技術能力的企業,使其獲得更多的研發稅額抵減優惠。 (6)擴大開放式創新企業之租稅優惠 本報告指出,研發租稅優惠效果對執行開放式創新之企業更為顯著,故建議將執行「產–研」、「產–學」、「產–產」合作的開放式創新企業納入租稅優惠對象。
加拿大運輸部發布2025無人機方案,提出建立無人機交管系統等優先項目加拿大運輸部(Transport Canada)於2021年3月22日發布「2025無人機方案」(Transport Canada’s Drone Strategy to 2025),概述其對無人機的願景及方案,並提出其至2025年前所應優先關注之項目,以確保無人機安全地整合進現代化航空系統並進入空域中。 為因應無人機產業發展帶來新挑戰及機會,加拿大運輸部列出五點事項做為對總體政策及優先事項之考量,包括: (一)透過安全規範支持創新:相關方案包含為偏鄉地區操作較低風險之視距外操作制定規範、為中度風險視距外操作核發飛行操作許可、在實際操作環境中測試技術,以及核准相關試行計畫,以提供中度風險之視距外操作更多的政策規劃資訊。 (二)建立無人機交通管理系統:包括建立無人機飛行計畫、空域使用請求系統、通訊、導航及空域監管系統、自2021年於偏鄉地區進行無人機交通管理實驗、探索「數位牌照」(digital license plate)用於遠端識別無人機的選項,以作為無人機交通管理系統基礎。 (三)無人機的安全風險:與利益相關人合作釐清機場保安的角色與職責、通訊傳輸協定及突發事件回應期間的工作協調、評估機場威脅及漏洞以了解風險、探索反無人機技術、對未經授權無人機的侵入進行偵測及追踪,以及導入驅逐未經授權無人機的安全框架。 (四)創新推動經濟發展:促進短、中期研發計畫、對先進無人機研發活動尋求合作機會、尋求能為加拿大氣候環境與操作提供資料的優先研發項目、制定方案使新型無人機技術更容易被國際市場接受、針對無人機之營運框架及產業目標進行評估、擬定產業合作策略並促進現有航空經濟框架現代化。 (五)建立民眾對無人機的信任:為增進民眾對無人機的認識及接受度,制定行動計畫、與地方政府共同規劃營運、鼓勵更多的社群參與,並與執法單位持續合作執行安全無人機操作規則。 加拿大運輸部將對本方案定期進行評估並於2025年前完成總體檢視,並公布2025-2030年的無人機發展方案。
德國專利商標局加入全球專利審查高速公路(GPPH)德國專利商標局(DPMA)於2015年7月6日加入全球專利審查高速公路(Global Patent Prosecution Highway,簡稱GPPH),基於此,德國在現有的PPH合作基礎上拓展12個其他的合作專利局。 PPH的目的是經由雙方交流和跨國界專利檢索與審查結果的使用以加速專利登記的處理,一方面維持專利審查的品質,同時形成有效率的專利審查程序。 從2015年7月6日起,一個加速審查的申請不只在德國專利商標局之前合作的9大PPH專利局,即:中國國家知識產權局、日本專利局、英國知識產權局、美國專利商標局、韓國知識產權局、加拿大知識產權局、芬蘭國家專利注冊委員會、新加坡知識產權局、奧地利專利局,還可以在下述12個國家或地區試行,即:澳大利亞知識產權局、丹麥專利商標局、俄羅斯聯邦知識產權局、匈牙利知識產權局、西班牙專利商標局、瑞典專利注冊局、葡萄牙工業產權局、愛沙尼亞專利局、以色列專利局、挪威知識產權局、冰島專利局、北歐專利局(包括丹麥專利商標局、挪威知識產權局、冰島專利局)。 對申請人來說這個制度的優點是,未來若申請人的專利申請案的請求項在參與GPPH的任一國家或地區的專利機構已經被認為具有可專利性,那麼申請人可以要求作為後續申請受理局的德國專利商標局進入簡易程序,以獲得加速審查。
美國「人工智慧應用管制指引」美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。