歐盟於2015年5月9日在拉脫維亞的里加舉辦了為期一週之「eHealth Week」研討會,包含由歐盟輪值理事會主辦之高階eHealth會議,以及由歐洲HIMSS (Healthcare Information and Management Systems Society)主辦之「WoHIT (World of Health IT Conference & Exhibition)」兩大活動,而2015歐洲mHealth高峰會為其中備受矚目的重要主題活動。該高峰會以推動歐洲mHealth進程之執行為領導思考核心,相關利害關係者(包括公部門、ICT產業、健康保健專業學者)於5月12日以mHealth綠皮書公眾諮詢結果為基礎,針對歐盟目前執行中以及未來可能採取之政策為討論,主要議題包括:1.所蒐集資料之隱私與安全保護。2.生活康樂型apps產品之安全性與品質管控。3.網路經營者對於mHealth市場之進入障礙。
針對資料之隱私與安全保護議題,公眾諮詢結果顯示,關鍵問題在於mHealth apps蒐集使用者資料是否有足夠的隱私與安全保障措施?與會者並認為此問題在資料的第三人再利用情形尤為重要。對此歐盟執委會表示將展開就mHealth apps訂定以產業為主導、範圍涵蓋資料隱私與安全性之行為守則,以建立使用者對mHealth apps之信任感,並提升app開發者對歐盟資料保護法規之遵法意識。
針對生活康樂型apps(包括健康照護相關app)產品之安全性與品質管控議題,透過與會者現場意見調查顯示,認為健康照護相關apps之安全性、品質與可靠性由於欠缺臨床佐證,導致就apps的目的與功效會有錯誤的宣示。值得注意的是,制定法規控管並非多數意見,大多數與會者認為以訂定指引或標準的方式,作為生活與康樂型apps的安全性與品質之依循方針較為妥適。對此歐盟執委會表示會持續跟進此議題並與相關利害關係者討論下一步之行動。
針對網路經營者進入歐盟mHealth市場議題,與會者認為網路經營者將面臨複雜的進入障礙,諸如歐盟相關法規架構的不清與零散、mHealth方案與設備的互通性與開放標準的欠缺等。歐盟執委會明確表示,支持網路經營者進入mHealth市場,目前歐盟正在進行的「Startup Europe」等相關倡議措施,即是以強化網路及資通訊業者商業環境為目的,提供網路經營者法規諮詢、投資媒合、商業模式育成等協助,以降低網路經營者所面對之市場進入門檻並有機會展現其新創能量。
全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
網路搜尋引擎龍頭Google 控告Microsoft剽竊搜尋結果網路搜尋引擎龍頭Google質疑Microsoft研發的“Bing”搜尋引擎有剽竊Google搜尋結果的狀況,對此Google已提出訴訟。Google表示,為了要調查是否有搜尋結果被剽竊的情形,故意在搜尋引擎中創造近100個毫無意義的搜尋關鍵字,例如“Hiybbprqag”、“Mbzrxpgiys”和“Indoswiftjobinproduction”等,同時對應該關鍵字插入虛假的搜尋結果。在幾個禮拜之後,Google發現競爭對手Microsoft 的Bing搜尋引擎也出現相同的搜尋結果,因此認為Bing有剽竊之疑。Google表示:「Google的搜尋結果是經過多年辛苦努力的成果,這件事情對我們來說像是一場馬拉松賽跑中有人在背後偷襲你,然後突然跳到終點站前迎接勝利,是一種欺騙的行為。」 Microsoft否認剽竊搜尋結果,認為這是Microsoft用來提高搜尋品質結果的方法之一,Bing實際上使用不同的符號和方法來對於不同的搜尋結果加以分級,用來辨別不同的搜尋結果。同時針對搜尋結果提供多數關連的答案,藉此增加消費者對於Bing搜尋引擎的良好經驗,Google使用間諜手法(Spy-novelesque stunt)對競爭對手進行調查,此舉已抹黑Bing,蒙上不好的評價。 Google提出抗辯認為Bing的行為構成簡單而顯然的詐欺,造成不同的搜尋引擎產生同樣的搜尋結果。況且搜尋引擎的功能,若可以出現與Google搜尋下相同的結果,並無法保證能創造出更好的搜尋品質,Microsoft的說法無法獲得肯認,後續延燒的訴訟爭議,有待日後進一步觀察。
日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。 SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。 研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。