流行音樂之抄襲,於我國著作權法之評價上,是以著作權法第91條第1項「擅自以重製之方法侵害他人之著作財產權者」來評價,我國智慧財產法院已有相關判決可供參酌,如智慧財產法院 103 年刑智上易字第 47 號刑事判決。惟流行音樂之創作,往往受到流行趨勢及過去其他作品的啟發,但將任何的風格上的模仿皆認為係著作權之侵害顯然並不恰當,而旋律相似度高達九成左右者屬於抄襲固然無庸置疑,然僅取樣(sampling)使用少數詞曲,用以表達概念或致敬之使用他人創作情形,其判斷標準,或可參考美國法院之判決見解。
2003年的Newton v. Diamond案中,第九巡迴上訴法院認可「微量取用」(de minimis use)原則,認為在有數十秒的取樣情形時,當一般聽眾不認為是挪用,即構成微量取用,並無實質近似,且若未取樣原曲之重要部分,亦不構成抄襲。但2005年時,聯邦第六巡迴上訴法院在Bridgeport Music, Inc. v. Dimension Films案中,對微量取用的情形提出「明確性規則」(bright- line rule),認為必須要取得授權方得取樣;而美國最高法院則在1994年的Campbell v. Acuff-Rose案中,認為雖有擷取他曲旋律,但整體曲風不同時,採取轉化性原則,認為構成合理使用。
本文為「經濟部產業技術司科技專案成果」
2013年6月4日大立光在北加州聯邦地方法院起訴玉晶光,主張玉晶光生產的八款透鏡侵害其五件美國專利。就部分的產品玉晶光請求法院裁判無引誘侵權,北加州聯邦地方法院部分准許了玉晶光的請求,之後大立光就無引誘侵權部分上訴聯邦巡迴法院敗訴。 大立光未能主張直接侵權,因為玉晶光絕大部分的透鏡是銷售給蘋果在亞洲的供應鏈中的鏡頭模組廠,鏡頭模組廠再販售給亞洲的系統組裝廠,最後由系統組裝廠整機出售給蘋果,再由蘋果販賣給美國的消費者。這個過程中玉晶光並非唯一的透鏡供應商,大立光也是供應商之一甚至供應量大於玉晶光。 法院贊同並認為引誘侵權是行為人(本案中為蘋果)被引誘而有直接侵權的證據,但大立光在本案中無法證明玉晶光有引誘侵權責任,因玉晶光沒有在美國有直接製造、使用、銷售、許諾銷售或進口的行為,故不構成直接侵權,而玉晶光在本案中並不爭執侵害大立光的專利權,但主張並非是引誘侵權人。 大立光另提出的主張是蘋果的供應鏈是「隨機選擇」大立光或玉晶光的透鏡,因此推論蘋果在美國的產品採用玉晶光的比例,等於蘋果在全世界的產品採用玉晶光的比例,進而認定蘋果在美國有直接侵權。唯聯邦巡迴上訴法院認為大立光關於「隨機選擇」這個主張,沒有提出來自供應鏈的相關證據,所以沒辦法證明蘋果在美國的產品有使用玉晶光的透鏡。大立光可再上訴美國最高法院。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
淺談美國與日本遠距工作型態之營業秘密資訊管理淺談美國與日本遠距工作型態之營業秘密資訊管理 資訊工業策進會科技法律研究所 2022年05月18日 根據2021年5月日本總務省所公布之《遠距工作資安指引》第5版,近年來隨著科技的進步,遠距工作在全球越來越普及,過去將員工集中在特定辦公場所的工作型態更是因為COVID-19帶來的環境衝擊,使辦公的地點、時間更具有彈性,遠距工作模式成為後疫情時代的新生活常態。 因應資訊化時代,企業在推動遠距工作時,除業務效率考量外,更需注意資安風險的因應對策是否完備,例如員工使用私人電腦辦公時要如何確保其設備有足夠的防毒軟體保護、重要機密資訊是否會有外洩的風險等。 本文將聚焦在遠距工作型態中,因應網路資安管控、員工管理不足,所產生的營業秘密資訊外洩風險為核心議題,研析並彙整日本於2021年5月由日本總務省所公布之《遠距工作資安指引》第5版[1],以及美國2022年3月針對與遠距工作相關判決Peoplestrategy v. Lively Emp. Servs.之案例[2]內容,藉此給予我國企業參考在遠距工作模式中應注意的營業秘密問題與因應對策。 壹、遠距工作之型態 遠距工作是指藉由資訊技術(ICT Information and Communication Technology),達到靈活運用地點及時間之工作方式。以日本遠距工作的型態為例,依據業務執行的地點,可分為「居家辦公」、「衛星辦公室辦公」、「行動辦公」三種: 1.居家辦公:在居住地執行業務的工作方式。此方式因節省通勤時間,是一種有效兼顧工作與家庭生活的工作模式,適合如剛結束育嬰假而有照顧幼兒需求的員工。 2.衛星辦公室(Satellite Office)辦公:在居住地附近,或在通勤主要辦公室的沿途地點設置衛星辦公室。在達到縮短通勤時間的同時,可選擇優於居住地之環境執行業務,亦可在移動過程中完成工作,提高工作效率。 3.行動辦公:運用筆記型電腦辦公,自由選擇處理業務的地點。包含在渡假村、旅遊勝地一邊工作一邊休假之「工作渡假」也可歸類於此型態。 貳、遠距工作之風險及其對策 遠距工作時,企業內外部資訊的交換或存取都是透過網際網路執行,對於資安管理不足的企業來說,營業秘密資訊可能在網路流通的過程中受到惡意程式的攻擊,或是遠距工作的終端機、紀錄媒體所存入的資料有被竊取、遺失的風險。例如商務電子郵件詐欺(Business Email Compromise,簡稱BEC)之案例,以真實CEO之名義傳送假收購訊息,藉此取得其他公司之聯絡資訊。近年來BEC的攻擊途徑亦增加以財務部門等資安意識較薄弱的基層員工為攻擊對象的案例[3]。 由於員工在遠距工作時,常使用私人電腦或智慧型手機等終端機進行業務資料流通,若員工所持有的終端機資安風險有管控不佳的情況,即有可能被間接利用作為竊取企業營業秘密資訊之工具。例如2020年5月日本企業發生駭客從私人持有之終端機竊取員工登入企業内網的帳號密碼,再以此做為跳板,進入企業伺服器非法存取企業之營業秘密資訊,造成超過180家客戶受到影響[4]。 關於遠距工作網路資安的風險對策,在技術層面上,企業可使用防毒軟體或電子郵件系統的過濾功能,設定遠距工作之員工無法開啟含有惡意程式的檔案,或是透過雲端服務供應商代為控管存取資料之驗證機制,使遠距工作的過程中不用進入企業内網,可直接透過雲端讀取資訊。另外,建議企業將資訊依照重要程度作機密分級,並依據不同分級採取不同規格的保密措施。例如將資料分成「機密資訊」、「業務資訊」、「公開資訊」 三個等級[5],屬營業秘密、顧客個資等機密資訊者,應採取如臉部特徵辨識、雙重密碼認證等較高規格的保密措施[6]。在內部制度面上,企業則可安排定期遠距工作資安教育訓練、將可疑網站或郵件資訊刊登在企業電子報、公告提醒員工近期資安狀況;甚至要求員工在連結企業内網或雲端資料庫時,須使用資安管理者指定的方法連結,未經許可不得變更設定。 除上述網路資安的風險外,員工管理問題對於企業推動遠距工作是否會導致營業秘密資訊洩漏有關鍵性的影響。因此,企業雇主與員工在簽訂保密協議時,雙方皆需要清楚了解營業秘密保護的標準。以美國紐澤西州Peoplestrategy v. Lively Emp. Servs.判決為例,營業秘密案件的裁判標準在於企業是否已採取合理保密措施[7]。如果企業已採取合理保密措施,而員工在知悉(或應該知悉)有以不正當手段獲得營業秘密之情事,則企業有權要求該員工承擔營業秘密被盜用之賠償責任[8]。在本案中,原告Peoplestrategy公司除了要求員工須簽屬保密協議外,同時有採取保護措施,禁止員工將公司資訊存入筆記型電腦,並且要求員工離職時返還公司所屬之機密資訊,並讀取資訊的過程中,系統會跳出顯示提醒員工有保密義務之通知,故法院認定原告有採取合理的保護措施,保護機密資訊的秘密性[9]。與之相反,Maxpower Corp. v. Abraham案例中,原告僅採取一項最基礎的保密措施(設置電腦設備讀取權限並要求輸入密碼),且與其員工簽訂保密協議中缺乏強調保密之重要性、未設立離職返還資訊之程序,故法院認定原告所採取之管控機制未能達到合理保密措施[10]之有效性。 藉由前述兩件判決案例,企業在與員工簽屬保密協議時,應向員工揭露企業的營業秘密保密政策,並說明希望員工如何適當處理企業所屬的資訊,透過定期的教育訓練宣導機制,以及員工離職時再次提醒應盡之保密義務。理想上,企業應每年與員工確認保密協議內容是否有需要配合營運方向、遠距工作模式調整,例如員工因為遠距工作使工作時間、地點的自由度增加,是否會發生員工接觸或進一步與競爭對手合作的情形。對此,企業應該在保密協議中訂立禁止員工在企業任職期間出現洩露公司機密或為競爭對手工作之行為[11]。 參、結論 以上概要說明近期美國和日本針對遠距工作時最有可能產生營業秘密資訊管理風險的網路資安問題、員工管理問題。隨著後疫情時代發展,企業在推動遠距工作普及化的過程中,同時也面臨到營業秘密管控的問題,以下以四個面向給予企業建議的管控對策供參。 (一)教育宣導:企業可定期安排遠距工作資安教育訓練,教導員工如何識別釣魚網站、BEC等網路攻擊類型,並以企業電子報、公告提醒資安新聞。另外,規劃宣導企業營業秘密保密政策,使員工清楚應盡的保密義務,以及如何適當處理企業的資訊。 (二)營業秘密資訊管理:企業應依照資訊重要程度作機密分級,例如將資訊分成「機密資訊」、「業務資訊」、「公開資訊」三個等級,對於機密資訊採取如臉部特徵辨識、雙重密碼等較嚴謹的保密措施。其中屬於秘密性高的營業秘密資訊則採取較高程度的合理保密措施,以及對應其相關資料應審慎管理對應之權限、存取審核。 (三)員工管理:企業在最理想的狀況下,應每年與員工確認保密協議的約定內容是否有符合業務營運需求(例如遠距工作應執行的保密措施),並確保員工知悉要如何有效履行其保密義務。要求員工在處理營業秘密資訊時,使用指定的方式連結企業内網或雲端資料庫、禁止員工在職期間或離職時,在未經許可之情況下持有企業的營業秘密資訊。 (四)環境設備管理:遠距工作時在技術管理上最重要的是持續更新資安防護軟體、防火牆等阻隔來自於外部的網路攻擊,避免直接進入到企業內部網站為原則。同時,需確認員工所持有的終端機是否有資安風險管控不佳的風險、以系統顯示提醒員工對於營業秘密資訊應盡的保密義務。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]〈遠距工作資安指引〉第5版,總務省,https://www.soumu.go.jp/main_sosiki/cybersecurity/telework/ (最後瀏覽日:2022/04/27)。 [2]Karol Corbin Walker, Krystle Nova and Reema Chandnani, Confidentiality Agreements, Trade Secrets and Working From Home, March 11, 2022, https://www.law.com/njlawjournal/2022/03/11/confidentiality-agreements-trade-secrets-and-working-from-home/ (last visited April 27, 2022). [3]同前揭註1,頁99。 [4]同前揭註1,頁103。 [5]同前揭註1,頁73。 [6] Amit Jaju ET CONTRIBUTORS, How to protect your trade secrets and confidential data, The Economic Times, March 05, 2022, https://economictimes.indiatimes.com/small-biz/security-tech/technology/how-to-protect-your-trade-secrets-and-confidential-data/articleshow/90010269.cms (last visited April 27, 2022). [7]Sun Dial Corp. v. Rideout, 16 N.J. 252, 260 (N.J. 1954). Karol Corbin Walker et al., supra note 2 at 3. [8]18 U.S.C.§1839(5). Karol Corbin Walker et al., supra note 2 at 3. [9]Peoplestrategy v. Lively Emp. Servs., No. 320CV02640BRMDEA, 2020 WL 7869214, at *5 (D.N.J. Aug. 28, 2020), reconsideration denied, No. 320CV02640BRMDEA, 2020 WL 7237930 (D.N.J. Dec. 9, 2020). Karol Corbin Walker et al., supra note 2 at 3. [10]Maxpower Corp. v. Abraham, 557 F. Supp. 2d 955, 961 (W.D. Wis. 2008) Karol Corbin Walker et al., supra note 2 at 3. [11]Megan Redmond, A Trade Secret Storm Looms: Six Steps to Take Now, JDSUPRA, March 07, 2022, https://www.jdsupra.com/legalnews/a-trade-secret-storm-looms-six-steps-to-6317786/ (last visited April 27, 2022).
英國展開醫療器材監管公眾意見徵詢並公布《人工智慧軟體醫材改革計畫》英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2021年9月16日展開期待已久的「英國醫療器材監管的未來」公眾意見徵詢(Consultation on the Future of Medical Devices Regulation in the United Kingdom),並公布「人工智慧軟體醫材改革計畫」(Software and AI as a Medical Device Change Programme)。英國欲從醫療器材上市前核准至其壽命結束進行監管改革,徹底改變一般醫療器材與人工智慧軟體醫療器材之監管方式。意見徵詢已於2021年11月25日結束,而該修正案預計於2023年7月生效,與英國針對醫療器材停止使用歐盟CE(Conformité Européenne, 歐洲合格認證)標誌並要求採用英國UKCA(UK Conformity Assessed, 英國合格評定)標誌的日期一致。 人工智慧軟體醫材改革計畫則包含十一個工作項目(work package,下稱WP),WP1與WP2分別為監管資格與監管分類,皆涉及監管範圍之劃定;WP3與WP4分別涉及軟體醫材上市前與上市後,如何確保其安全性與有效性的監管之研究;WP5針對軟體醫材之網路安全進行規範;WP6與WP7涉及加速創新軟體醫材審核上市之特別機制,分別為類似「創新藥品藥證審核與近用途徑」 (innovative licensing and access pathway)的機制,以及允許適時上市並持續研究監控風險的「氣閘分類規則」(airlock classification rule);WP8為確保智慧型手機之健康應用程式安全、有效與品質之規範研究;WP9~WP11則分別針對人工智慧軟體醫材之安全與有效性、可解釋性(interpretability)以及演進式(adaptive)人工智慧進行法規調適之研究。 MHRA預計透過指引、標準、流程之公布而非立法方式實現其監管此領域的目標。MHRA亦透露,針對上述工作項目,其已與重點國家和國際機構進行研究合作,已有不少進展即將公布。