在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。
美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。
與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。
但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
中華人民共和國第12屆全國人民代表大會常務委員會第18次會議於2015年12月27日通過並公布《中華人民共和國反恐怖主義法》(以下簡稱反恐法),並自2016年1月1日開始施行。反恐法第18條與第19條要求電信業務經營者與互聯網服務提供者,應當為公安機關、國家安全機關依法進行防範、調查恐怖活動「提供技術接口和解密等技術支持和協助」,並應當依照法律與行政法規規定,「落實網絡安全、信息內容監督制度和安全技術防範措施,防止含有恐怖主義、極端主義內容的信息傳播;發現含有恐怖主義、極端主義內容的信息的,應當立即停止傳輸,保存相關記錄,刪除相關信息,並向公安機關或者有關部門報告。」倘有違反以上規定且情節嚴重者,反恐法第84條授權由主管部門對該公私處50萬人民幣以上罰款,並對該公司直接負責之主管人員與其他直接責任人員處10萬元人民幣以上50萬人民幣以下罰款,並可由公安機關對該等人員處5日以上15日以下之拘留。 我國刻正進行資通安全管理法之制定,以為範圍更廣之資訊基本法的作用法。資通安全管理法當中考量納入與關鍵基礎建設相關之民間產業,使之成為資安通報之一環,政府需要民間企業配合時也將於法有據。於恐怖攻擊事件頻傳之今日,倘我國需要就此等事件要求電信業者或服務提供者進行通報時,相關國際立法例及其實踐,即值參酌。
3D列印所涉法律議題3D列印(3D printing),屬於快速成形技術的一種,以數位模型檔案為基礎,運用粉末狀金屬或塑膠材料等可粘合材料,透過逐層堆疊累積的方式來構造物體的技術(即「積層造形法」)。過去其常在模具製造、工業設計等領域被用於製造模型。現在則可用於產品的直接製造,特別是一些高價值應用(比如髖關節或牙齒,或一些飛機零組件)已經有使用這種技術列印而成的零組件,技術漸漸成熟普及。 3D列印通常是採用數位技術材料印表機來製作。3D印表機的產量以及銷量2013年以來已經得到了極大的增長,其價格也正逐年下降,未來家家戶戶擁有3D列印機器可能就如同擁有洗衣機般平凡,帶出新的商機。該技術在珠寶、鞋類、工業設計、建築、工程和施工(AEC)、汽車、航空太空、牙科、醫療產業、教育、地理訊息系統、土木工程、槍枝以及其他領域都有所應用。 然而3D列印機器的普及只要透過網路平台下載相同的數據檔案,就能夠不花費一毛錢即可得到相同的內容,因此引發了智慧財產權的爭論。 3D列印所涉及的法律議題相當廣泛,有:著作權、專利權、商標權。再者,而在工商業等公司法領域,亦有可能可透過公平法加以保護。另外,專利法、新型專利法 (Gebrauchsmuster)、外觀設計法(Designrcht)對於實際上不能保密的技術解決方案和設計,例如,在產品具體化過程、在跨企業生產時、或物流遞送和服務提供過程中,在法律保護上,則重大意義。 又,在工業4.0因使用跨越國界之互聯網程序和系統,亟需國際法之保護,唯智慧財產權部分仍應該遵守屬地原則,以在該國有法律規定者為限。 在歐洲法律的層級,歐陸未來歐盟專利(EU-Patent)或稱歐洲專利一體化效果(Europäisches Patent mit einheitlicher Wirkung, EPeW) 將得到簡化,將具備共通的專利保護法律框架。
日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。