日本自動駕駛戰略本部新近政策規劃

  日本鑒於為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於2016年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於同年12月9日召開第一次會議。討論的範圍則包括:為實現自動駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。

  會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「以非平地休息服務站為據點的自動駕駛服務」等議題速成立工作小組,將對自動駕駛所應用技術進行各類型實證試驗。

  其中,在「以非平地休息服務站為據點的自動駕駛服務」方面,已於2017年2月展開補助試驗計畫的募集;預計驗證的項目有分別針對一般(搭載2-10人)以及大型車輛(10人以上),結合GPS、雷達、攝影機等來瞭解障礙物資訊的車輛自動控制技術。

  而在「大卡車列隊行走」方面,國土交通省則是在2016年已開始的實證試驗基礎上持續拓展。未來在2019年中後,並規劃將驗證範圍擴展至高速公路上驗證更長距離的自動駕駛。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本自動駕駛戰略本部新近政策規劃, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=57&tp=1&d=7771 (最後瀏覽日:2025/02/07)
引註此篇文章
你可能還會想看
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

關於軟體產品的智慧財產權保護建議

  近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。   然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。   綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

員工分紅市價八折課稅

  現行促進產業升級條例第19條之1規定,為鼓勵員工參與公司經營,並分享營運成果,公司員工以其紅利轉作服務產業增資,而取得新發行記名股票,採「面額」課徵所得稅。而依據所得基本稅額條例第12條第1項第5款規定,對於員工「可處分日次日時價」與股票面額之間的差額部分,另計入最低稅負制課稅。   台聯黨團認為現行促產條例第十九條之一關於員工分紅配股以面額課稅規定,使不少高科技產業上市櫃公司,利用促產條例優惠,壓低員工本薪,以分紅配股吸引人才,造成營業成本低列,將薪資費用轉嫁給股東,扭曲財報,使高獲利的高科技產業和薪資紅利豐厚的科技人租稅優惠多繳稅少,造成政府稅收短缺,因而提出修改案,改由「市價的八成」課徵所得稅。立法院 經濟能源委員會初審通過修正促進產業升級條例,將員工分紅配股由「面額」改依「市價八折」課稅,上市櫃公司市價以配股發放日前一個月均價為準,未上市櫃公司則以配股發放日淨值為準,此規定 引發高科技業者反彈,並向經濟部反映。   目前員工分紅改為市價的八成課稅雖通過委員會初審,但提交下次院會討論前,須經朝野協商。經濟部表示,此案初審後尚需經過立法院政黨協商,再交由院會決定。員工分紅配股課稅方式改變,應要有配套才合宜(例如一定之緩衝期間讓業者調整員工薪資結構),若在配套未完成前就做決定,是比較不好的決策。

菲律賓推動基改稻米 窒礙難行

  根據國際間重要農糧組織ISAAA(International Service for the Acquisition of Agri-Biotech Applications)所公布的2004年統計報告,全球基改作物栽種面積已達八千一百萬公頃,在2003年僅有六千七百萬公頃,成長幅度高達20%,尤其是在開發中國家。菲律賓是亞洲第一個支持商業化生產基因改造食物的國家,從2000年起即開始商業交易基因改造作物。由於其所研發之轉殖”IR-72”稻米品種栽培並不普遍,也未被消費者、農夫及麵粉業者廣泛地接受,因此不合適商業化生產,雖然菲律賓嘗試其他較受歡迎的品種來進行基改轉殖,但迄今尚未成功。   基於基因稻米對於環境安全和人體健康所帶來的影響是無法預知的,綠色和平組織抗議菲律賓政府加速推動生技農作物的計畫。菲律賓所面臨的挑戰不單僅是綠色和平的抗議,另一個因素因為氣候的不穩定而影響了稻米的產量,今年生產量僅148萬噸,距離目標?151萬噸,因此仍需仰賴進口稻米來彌補這不足的差距。   菲律賓稻米研究中心執行長Leo Sebastian認為,基改稻米並不是解決稻米供應不足的唯一方式,引介栽種高生產量的稻米品種或者改善灌溉系統等都是可行的方式。

TOP