日本針對遠距醫療新增「線上診療費」等診療給付項目,提高給付內容與標準

  日本厚生勞動省於2月7日公布2018年度健康保險診療報酬改訂內容,本次改訂項目中,最受矚目者為增訂線上診療之報酬給付。此種活用網路或智慧手機等資通訊網路(ICT)設施所為之診療,在2月7日中央社會保險醫療協議會總會中審議通過,公布個別改訂項目及診療報酬點數。 所謂的「線上診療」係指使用智慧手機之影像電話機能等,使醫師與病患以網路為連結所進行之診療。新設之診療報酬規定,係以具備「使用線上系統等通信技術,得為同步(real time)溝通,為診療與醫學管理。換言之,使用資通訊機器,以影像通話,透過同步影像有溝通可能性係為必要要件。

  此一改訂自本年4月1日起適用,醫師診療原則上以面對面診療為原則,在包含有效性、安全性之考量下,且符合一定要件前提而為線上診療時,以「線上診療費」、「線上醫學管理費」等給付項目為給付。

  因應此一改訂,厚生勞動省於本年3月30日發布並下達「線上診療適切實施指針」(醫政發0330第46號),本指針係從醫師法第20條禁止無診察診療及個人資料保護法,與線上診療之關係為出發,就到目前為止厚生勞動省發出的通知或事務聯絡等之解釋為正式整理及明確化。項目有:1.關於提供線上診療之事項;2.提供線上診療應具備之體制事項;3.其他線上診療關連事項。各自訂出「最低限度遵守事項」、「建議及獎勵事項」等,最低限度遵守事項之遵守範圍係為了明確不違反醫師法第20條規定所必要。

本文為「經濟部產業技術司科技專案成果」

※ 日本針對遠距醫療新增「線上診療費」等診療給付項目,提高給付內容與標準, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=57&tp=1&d=8031 (最後瀏覽日:2025/07/02)
引註此篇文章
你可能還會想看
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

德國公佈聯邦政府人工智慧戰略要點

  德國政府於2018年7月18公佈「聯邦政府人工智慧戰略要點」(Key points for a Federal Government Strategy on Artificial Intelligence),係由德國聯邦經濟事務及能源部、聯邦教育及研究部,與聯邦勞動及社會事務部共同撰寫而成。 德國政府表示該要點將作為推動人工智慧技術與產業發展的基礎方針,並希望以負責任的方式以及朝向社會利益發展的方向進行人工智慧開發與應用。   德國人工智慧戰略要點摘要如下: 1. 研究能量:必須大幅增加研究支出並且爭取世界一流人才。 2. 人工智慧能力應泛分佈在社會各處:各學科與產業領域皆需要人工智慧。 3. 資料作為人工智慧發展的基礎:資料是人工智慧發展的重要關鍵,德國的資料發展重點將放在資料品質的強化。 4. 基礎設施:人工智慧中重要的技術「深度學習」,不僅需要大量資料,同時還需要強大的計算能力,德國需要加強計算能力的硬體設備。 5. 經濟應用:德國數位化發展的下一步需要仰賴人工智慧技術,尤其是中小企業採納人工智慧技術方面將會是焦點之一。 6. 社會法制:人工智慧發展過程中牽涉許多道德以及法制、監管議題,德國政府認為這些都必須請不同利害關係人共同公開討論。 7. 國際合作:德國作為歐盟會員國之一,未來的人工智慧發展將力求與歐盟各國合作。   整體而言,德國的人工智慧戰略著重在建立人工智慧生態系統,並強調人與機器之間的合作關係,為人工智慧產業發展奠定良好基礎。德國政府將基於此要點繼續制定進一步的人工智慧戰略,並預計將於2018年12月公佈德國的人工智慧戰略完整報告。

日本發布新版「氫能基本戰略」,全面推動氫能產業發展

日本經濟產業省召集的「氫能、燃料電池戰略協議會」(水素・燃料電池戦略協議会)於2023年6月6日發布2023年版的「氫能基本戰略」(水素基本戦略),此為日本於2017年首次提出「氫能基本戰略」後,依據近年國際社會2050淨零碳排之宣示,以及烏俄戰爭造成的能源供應危機等情勢變化,再次提出的新版氫能國家型戰略。 本戰略以一個S、三個E作為其氫能發展基本原則,即安全性(Safety)、能源保全(Energy Security)、經濟效益(Economic Efficiency)、環境(Environment);在確保使用安全性的前提下,期望透過發展氫能,實現「氫能社會」理想,兼顧能源供給穩定與經濟成長,同時對環境有所貢獻。基此,本戰略提出擴大氫供給、創造氫需求、建構大規模供應鏈、發展地區性氫能利用、推動技術革新、國際合作、促進國民理解等七項推動方向。 為強化氫產業競爭力,本戰略從製造、運輸、使用等三個面向著手,首先,確立2030年水電解裝置達15GW之目標,支援生產設備設置;其次,建置輸送管路等基礎設施,以降低運輸成本,並確保足夠的氫運輸船以供海上運輸使用;最後,於技術方面,加速燃料電池車、燃氫,以及以氫作為原料之製鋼、化學品製造等技術發展。 針對氫能安全性,則計畫擬定「氫能安全戰略」(水素保安戦略),從「氫安全性相關科學資料取得及共享」、「統一技術標準」、「第三方認證及技術機構之設立」、「人才培育」等面向,全面檢視並調整與氫供應鏈相關的法規範,以確保整體安全性。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP