美國創新戰略(Strategy for American Innovation)係美國經濟委員會(National Economic Council,NEC)及白宮科技政策辦公室(Office of Science and Technology Policy,OSTP)於2009年9月所提出的重要科研指導政策,為美國近年調整科研發展之依據,曾分別於2011年2月及2015年10月配合時事增補最新內容。該政策主要在說明美國政府、國民與企業應如何共同努力進行全面性的創新,強化長期的經濟成長;在此基礎上發展對於美國產業發展具有優先重要性的技術領域。最初提出時內容包括:1.美國創新基石之投資;2.促進以市場為導向的創新;3.以及針對國家需求的優先順位催化重要的科技突破。
白宮在2011年4月進一步提出一些重要的創新促進新機制,包括改革專利制度、重視數位教育以及基礎科學教育的強化、加速發展再生能源、提振美國創業精神(entrepreneurship)等。隨著政策的逐步推行,2015年10月公布之最新版本,內容包括:1.投資創新基石;2.刺激私部門進行創新活動,並研議租稅優惠永久制度化;3.營造一個創新者國家,改善創業環境,協助更多創新者成功創業。並且在政府機關間強調創新,另著重於從私部門的根本改變其活動和行為模式,提升創新層次才能確實將創新成果在產業間創造出來。
本文為「經濟部產業技術司科技專案成果」
英國財政大臣十六日在倫敦宣佈,政府將在其10年發展計劃中建立一個全國性的幹細胞研究網路,以鞏固英國在該領域的領先地位。 英國工黨政府一直對幹細胞研究提供支持,並且率先立法,允許治療性人類胚胎幹細胞研究。但是治療性胚胎幹細胞研究一直遭到人權組織的反對,使幹細胞研究機構在資金籌措方面陷入困境。為此,英國政府作出建立幹細胞研究網路的決定,無疑是為了加強英國在國際幹細胞研究領域的領先地位。 布朗當天在下議院宣佈二○○五年財政年度預算計劃時說,英國政府從二○○二年起的三年內向幹細胞研究撥款四千萬英鎊,另外,英國醫學慈善機構韋爾科姆信託公司承諾向幹細胞研究網路投資二千萬英鎊。
能源清醒!歐洲競爭電信協會主張應重新討論網路建設的付出與碳排放影響的歸責「能源清醒」(Energy Sobriety)作為一種概念逐漸被普及到政策和法令之中。目的在於使各種使用者對於自身行為所產生的碳排放有所警醒、並且就其行為所產生的碳排放負起責任,進而在產品、設備的選擇和使用習慣上重新進行考慮。藉由選擇減少消費、或是更改消費模式來更好的保護地球資源、減少碳排放。能源清醒的概念和能源效率的概念不同,他透過社會文化的改變來達到能源節省的目的、而不是仰賴技術的革新。 基於此一概念,歐洲競爭電信協會(European Competitive Telecommunications Association)於2022年9月發表對於網路基礎建設投資的聲明,希望能就對於網路建設的付出是否公平展開討論。 該協會表示,雖然其身為電子通信業者的成員們在歐洲綠色政綱(European Green Deal)上有所投入、致力於減少環境足跡,但是網路流量的穩定增加卻限制了電子通信業者對於減少溫室氣體排放的努力。而這種現象在行動網路(mobile network)的使用上特別明顯。因為將高品質(如4K、8K或HDR)的影像傳輸到行動裝置或小尺寸螢幕設備上對於用戶體驗的提升並沒有實際上的幫助,但是卻會使得網路頻寬(bandwidth)被大量消耗以及大量的溫室氣體在過程中被排放。這使得營運商將網路規模擴大(更多的核心網路和RAN設備、更多的設備和地點),因此有了更高的耗能,對於環境的影響也更加劇烈。對此,協會提議透過監管方式來改善這種情形,認為應要求內容供應商應採取非歧視性的、與內容無關的方式使影音解析度適應螢幕尺寸的解決方案,從而減少不必要的網路流量和浪費,並且給予其適度的獎勵措施。 該協會認為,任何符合能源清醒的模式都應該受到數位生態圈的集體鼓勵。而其中的每個參與者也應該要注意和承認自己的行為所產生的影響,並作為一個能源使用者和造成碳排放的實際個體負起責任。對此,歐洲競爭電信協會已經準備好就此提議進行討論與辯論。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
我國電子公文法制的最新發展