世界衛生組織透過「COVID-19疫苗全球取得機制COVAX」,促進疫苗研發及公平分配

  世界衛生組織(World Health Organization, WHO)於2020年8月24日公布「COVID-19疫苗全球取得機制(COVID-19 Vaccines Global Access Facility, COVAX)」,由全球疫苗與預防注射聯盟(Global Alliance for Vaccines and Immunisation, GAVI)、流行病預防創新聯盟(Coalition for Epidemic Preparedness Innovations, CEPI)及WHO共同主導,與多家疫苗廠商合作,協助取得多種疫苗組合的授權及核准,促進COVID-19全球疫苗研發及公平分配。

  COVAX是WHO「獲取COVID- 19工具加速計畫(Access to COVID-19 Tools Accelerator, ACT Accelerator)」下的疫苗分配機制。ACT-Accelerator透過匯集各國政府、衛生機構、科學界、產業界、民間團體的力量,共同合作開發創新診斷方法、加速融資研發治療工具、制定公平分配與交付疫苗機制、確保衛生系統與社區網路連接等四大領域,以盡快結束大流行疫情。

  COVAX作為COVID-19疫苗聯合採購機制,預計2021年底要提供20億劑疫苗,籌資181億美元;由GAVI與高收入國家簽訂投資契約,透過全球融資機制採購9.5億劑疫苗,同時搭配WHO制定的疫苗倫理分配架構,使COVAX能夠集中各國經濟體的購買力,保證候選疫苗的採購數量,鼓勵擁有專業知識的疫苗廠商盡速投入大規模的新疫苗生產,確保參與COVAX的國家及經濟體,皆能迅速、公平公正地取得大量有效的疫苗。

  COVAX承諾將為全球92個中低收入經濟體提供參與COVAX的融資工具;超過80個高收入經濟體已提交參與COVAX的意向書,將從公共財政預算中編列全球疫苗研發的捐助資金,並與92個中低收入國家結成疫苗合作夥伴。透過COVAX機制產出的疫苗,將會按照參與國人口比例公平地分配給所有國家,並且優先提供疫苗給衛生醫療工作者、老年人及疾病弱勢群體;隨後再根據各國家需求、易受感染程度與COVID-19威脅情況,提供更多劑量的支援。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界衛生組織透過「COVID-19疫苗全球取得機制COVAX」,促進疫苗研發及公平分配, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?tp=1&d=8588&no=64 (最後瀏覽日:2024/07/15)
引註此篇文章
你可能還會想看
高智發明(Intellectual Ventures)揭開其專利寶庫

  擁有專利但不生產商品,以購買專利與主張專利為主要商業模式的專利蟑螂,近來在美國引起眾多討論,2013年6月,美國白宮更正式發表聲明,不但要求行政機關打擊專利蟑螂,更建議立法機關作出相關修法。   高智發明(Intellectual Ventures,以下簡稱IV)自2001年創立以來,擁有約7萬個專利,其中4萬個屬於IV商業化專案,為主張專利之武器群。一向不承認自己屬於專利蟑螂的IV,2013年12月公開表列出3萬3千個用以主張專利侵權獲利之專利,包括無線技術、半導體技術、硬體、以及生物技術等高值專利;至於其他未公開的專利,IV則稱受限於第三方的保密義務無法公開。   IV宣稱此舉目的在於提供潛在專利被授權人或買受人一個購物清單;然而更為可能的,是面對同年11月底甫通過眾議院投票之創新法案帶來的壓力,所釋出之善意表示退讓。   前述公開清單目前在IV官網上公開提供下載與搜尋,對於企業或事務所,將來受到不知名公司控告專利侵權時,可以檢視這份清單,瞭解該案是否為IV所主導,但實際在訴訟策略上該如何運用學界與實務界尚未有明確的作法,值得繼續觀察。

美國政府課責署重視NPE濫訴現象,並提出「patent monetization entities」概念

  近年專利蟑螂(Paten Troll)、非專利實施實體(Non-Practicing Entity, NPE)的興起,使得國際上智慧財產權的運用出現巨幅變化。美國政府、企業及學界皆認為專利蟑螂濫訴現象為亟待解決之課題,而相繼投入研究,並於近日陸續發表重要之研究報告。   繼今年(2012)8月,美國國會研究處 (Congressional Research Service)提出對抗專利蟑螂之研究報告後(“An Overview of the "Patent Trolls" Debate”)。隸屬國會的政府課責署(Government Accountability Office, GAO, 另譯審計總署)所資助的研究團隊,亦於杜克大學科技與法律評論(Duke Law & Technology Review)發表相關研究。研究團隊採取實證的研究方法,於2007年~2011年間,每年度隨機抽樣100家涉及專利訴訟的公司,總計抽樣500家公司。依據該項研究結果,去年(2011)由NPE所提起的專利訴訟,佔研究樣本的40%,相較於5年前的數據,成長幅度高達2倍。本項研究可歸納以下兩項要點:   1.專利訴訟主體的變化   由NPE為原告所提起的專利訴訟數量呈現極速成長;由企業為原告者則逐年下降;同為非專利實施實體之大學,其作為原告所提起之訴訟則未達1%。   2.訴訟並未進行實質審理   由NPE提起之訴訟,其目的在於獲取和解金或授權金,故絕大多數係申請作成即時判決(summary judgement),即當事人一致認為對重要事實不存在爭議,而向法官申請不為事實審理,僅就法律問題進行裁決。   就此,該研究團隊認為,NPE已成為專利制度,甚至係整體經濟之一環,故提出應以「patent monetization entities」取代過往NPE的稱呼,強調此類公司以專利授權或專利訴訟作為公司營利之來源,如此將更為貼切。

英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形

  英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。   ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。   使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。   ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP