從美歐植物藥管理之法制趨勢探討我國中草藥產業發展之機會與挑戰

刊登期別
第19卷,第1期,2007年01月
 

本文為「經濟部產業技術司科技專案成果」

※ 從美歐植物藥管理之法制趨勢探討我國中草藥產業發展之機會與挑戰, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2102&no=57&tp=1 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
美國知名運動鞋品牌Converse 控告31家企業商標侵權

  Converse 一開始僅風靡於運動員、青少年,之後甚至帶動不追求時尚的族群也認得Converse 品牌。Converse早在Nike, Reebok和Adidas等品牌鞋款充滿市場前,以橡膠鞋頭與具識別性的星星圖樣,作為美國的運動鞋品牌,風行一時。   Converse在1917年為籃球運動員製造第一雙運動鞋—All Star,之後更邀請一位極知名的籃球明星Chuck Taylor為代言人,並以其為鞋款命名,引起旋風,成為美國青少年家喻戶曉的品牌,現已於全球累計銷售十億雙。   現在,這間百年鞋類製造商表示,Chuck Taylor鞋款廣泛可被識別的核心要素—黑色條紋和橡膠鞋頭被仿冒,對此,Converse 所屬的Nike公司已於2003年請求損害賠償;復於2008年寄發180封禁止令予販售外觀類似Chuck Taylor鞋款的零售商,藉此保護品牌。然其主要目的在於使仿冒品下架,故,此次,除了於紐約對加拿大、澳洲、義大利、中國與日本等企業提起訴訟,也針對銷售其知名運動鞋款 “Chuck Taylor”仿冒品的大型零售商Wal-Mart 和Ralph Lauren 提起訴訟。另向有權禁止仿冒品進口的美國國際貿易委員會(ITC)申請禁制令,禁止進口、銷售該仿冒鞋款。   Converse 總經理表示感到相當幸運,被公認為美國的流行指標,如此舉動,目的只是在停止仿冒的侵權行為。歡迎公平競爭,但任何公司都沒有權利抄襲Chuck Taylor的商標樣式。

Apple , AT&T解決有關iPhone的專利訴訟

  Klausner Technologies已結束2007年12月針對蘋果(Apple)與共同合作AT&T公司發起的專利訴訟案,並將專利技術以授權方式予Apple及AT&T。   Klausner Technologies具有視覺語音郵件(visual voice-mail)技術所衍生產品與服務,並在美國及其他國家申請並已獲得多項專利。Klausner Technologies認為Apple 所生產iPhone手機的觸摸屏介面設計,其視覺語音郵件功能,類似像電子郵件收發匣,可呈現所有已接收的語音郵件,並可讓使用者依個人喜好隨意指定郵件的排列順序與瀏覽方式,其功能與Klausner Technologies於2004-2006年間所申請專利技術雷同。故2007年底對Apple與AT&T發出專利訴訟,並請求3億6仟萬美元的賠償與預期未來使用權利金。本案最終在美國德州東區地方法院以和解方式結束,然而和解相關詳情尚未對外公布。   Klausner Technologies於控告Apple與AT&T前,已經與數家公司簽署視覺語音郵件技術授權合約,包括時代華納的AOL與VoIP網路提供商Aonage公司;亦對Comcast,Cablevision及eBay等三家公司提起訴訟,指出其VoIP產品,侵犯Klausner Technologies所申請關語音郵件的專利,並請求賠償與使用權利費用共計3億美元。依路透社報導,eBay已同意接受以授權方式取得語音郵件技術。

歐洲議會通過《人工智慧法案》朝向全球首部人工智慧監管標準邁進下一步

歐洲議會通過《人工智慧法案》 朝向全球首部人工智慧監管標準邁進下一步 資訊工業策進會科技法律研究所 2023年06月26日 觀察今年的科技盛事屬ChatGPT討論度最高,將人們從區塊鏈、元宇宙中,帶入人工智慧(AI)領域的新發展。ChatGPT於2022年11月由OpenAI開發的生成式人工智慧,透過深度學習模型,理解和生成自然語言,其功能包含回答各類型問題(如科學、歷史)、生成邏輯結構之文章(如翻譯、新聞標題)、圖形、影像等內容。然而對於人工智慧的發展,究竟如何去處理人機間互動關係,對於風險之管理及相關應用之規範又該如何,或許可從歐盟的法制發展看出端倪。 壹、事件摘要 面對人工智慧的發展及應用,歐盟執委會(European Commission)早在2018年6月成立人工智慧高級專家組(AI HLEG),並於隔年(2019)4月提出「可信賴的人工智慧倫理準則」(Ethics Guidelines for Trustworthy AI),要求人工智慧需遵守人類自主、傷害預防、公平、透明公開等倫理原則。於2021年4月21日歐盟執委會提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(以下稱人工智慧法案),於2023年內部市場委員會(Internal Market Committee)與公民自由委員會(Civil Liberties Committee)通過並交由歐洲議會審議(European Parliament),最終《人工智慧法案》於2023年6月14日通過。後續將再歐盟理事會(Council of the European Union)與辯論協商,尋求具共識的最終文本[1]。 貳、重點說明 由於「歐盟議會通過」不等於「法案通過」,實際上歐盟立法機制不同於我國,以下透過法案內容說明的契機,概述一般情況下歐盟之立法流程: 一、歐盟立法過程 通常情況下,法案由歐盟執委會(下簡稱執委會)提出,送交歐盟理事會及歐洲議會,作為歐盟的「立法者」歐洲理事會(下簡稱理事會)與歐洲議會(下簡稱議會)將針對法案獨立討論並取得各自機關內之共識。大致上立法程序有可分為三階段,在一讀階段若理事會與議會對於執委會版本無修改且通過,則法案通過,若任一機關修改,則會進行到二讀階段。針對法案二讀若仍無法取得共識,則可召開調解委員會(Conciliation)協商,取得共識後進入三讀。簡單來說,法案是否能通過,取決於理事會與議會是否取得共識,並於各自機關內表決通過[2]。 目前《人工智慧法案》仍處於一讀階段,由於法案具備爭議性且人工智慧發展所因應而生之爭議迫在眉睫,議會通過後將與執委會、理事會進入「三方會談」(Trilogue)的非正式會議,期望針對法案內容取得共識。 二、人工智慧法案 (一)規範客體 《人工智慧法案》依風險及危害性程度分級,其中「不可接受風險」因抵觸歐盟基本價值原則禁止(符合公益目標,如重大或特定犯罪調查、防止人身安全遭受危害等例外許可)。「高風險」則為法案規範之重點,除針對系統技術穩健、資料處理及保存訂有規範外,針對人為介入、安全性等也訂定標準。 而針對高風險之範疇,此次議會決議即擴大其適用範圍,將涉及兒童認知、情緒等教育及深度偽造技術(Deepfake)納入高風險系統,並強調應遵循歐盟個人資料保護規範。此外對於社會具有高影響力之系統或社群平臺(法案以4500萬用戶做為判斷基準),由執委會評估是否列為高風險系統。針對目前討論度高的生成式人工智慧(ChatGPT),議會針對法案增訂其系統於訓練及應用目的上,應揭露其為生成式人工智慧所產出之內容或結果,並摘要說明所涉及之智慧財產權[3]。 (二)禁止項目 關於《人工智慧法案》對於高風險系統之要求,從執委會及理事會的觀點來看,原則上重點在於對弱勢的保護及生物資料辨識之權限。歐盟禁止人工智慧系統影響身理及心理,包含對於特定族群如孩童、身心障礙者等弱勢族群之不平等待遇。同時原則禁止即時遠端的生物辨識利用,包含對於人性分析、動作預測等對於人類評價、分類之應用,例外情況如犯罪調查、協尋失蹤兒童、預防恐怖攻擊、關鍵基礎設施破壞等情況時方被允許。此次議會決議提高禁止即時遠端生物辨識的標準,包含納入敏感資訊的蒐集如性別、種族、政治傾向等,及其他臉部辨識、執法、邊境管制、情緒辨識等項目[4]。 參、事件評析 有關《人工智慧法案》雖歐洲議會已一讀通過,然而後續仍要面對與歐盟理事會的協商討論,並取得共識才能規範整個歐盟市場。因此上述規範仍有變數,但仍可推敲出歐盟對於人工智慧(含生成式)的應用規範態度。在面對日新月異的新興科技發展,其立法管制措施也將隨著橫向發展,納入更多種面向並預測其走向趨勢。因人工智慧有應用多元無法一概而論及管制阻礙創新等疑慮,觀察目前國際上仍以政策或指引等文件,宣示人工智慧應用倫理原則或其風險之管理,偏重產業推動與自律。 觀察歐盟《人工智慧法案》之監管目的,似期望透過其市場規模影響國際間對於人工智慧的監管標準。倘若法案後續順利完成協商並取得共識通過,對於如OpenAI等大型人工系統開發商或社群平臺等,若經執委會評估認定為高風險系統,勢必對於未來開發、應用帶來一定衝擊。因此,歐盟對於人工智慧監管的態度及措施實則牽一髮而動全身,仍有持續觀察之必要。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The AI Act, Future of Life Institute, https://artificialintelligenceact.eu/developments/ (last visited Jun. 20, 2023) [2]The ordinary legislative procedure, Council of European Union, https://www.consilium.europa.eu/en/council-eu/decision-making/ordinary-legislative-procedure/ (last visited Jun. 19, 2023) [3]EU AI Act: first regulation on artificial intelligence, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (last visited Jun. 21, 2023) [4]MEPs ready to negotiate first-ever rules for safe and transparent AI, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/press-room/20230609IPR96212/meps-ready-to-negotiate-first-ever-rules-for-safe-and-transparent-ai(last visited Jun. 21, 2023)

藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用

  藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。   為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。   此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。   最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。

TOP