法蘭克福最高法院在2006年10月19日對於一則「不好喝保證退費」電視廣告,判決被告對消費者因未盡到資訊告知義務(Informationspflicht)而違反不正競爭防止法(UWG)。
被告在一則促銷其所生產之礦泉水電視廣告中,打上「不好喝保證退費」等標語,但關於詳細退費資訊在電視廣告中並無說明,進一步的退費資訊,如退費條件、如何退費等,是黏在寶特瓶瓶身,需待消費者將此標籤撕下,才得以看到相關的退費資訊。原告是符合不正競爭防止法(UWG)第8條第3項第2款「以促進工商利益為目的而具備權利能力之工商團體」(Wettwerbsverband);原告認為被告違反「不正競爭防止法(UWG)」第4條第4款之規定:「未清楚標示引起消費者購買決心之促銷佸動的條件」。
法蘭克福最高法院(OLG Frankfurt a.M.)首先確認被告所刊登之「不好喝保證退費」電視廣告已經符合不正競爭防止法第4條第4款「促銷活動」之構成要件。再者,法院認為在被告所刊登之電視廣告及附在產品瓶身之退費條件標籤並不足以使消費者明確得知退費資訊。被告抗辯,基於現實因素,並無法將具體的保證退費條件一一細數在電視廣告中;惟法蘭克福最高法院認為,即使消費者可以透過其他管道得到相關的退費資訊,亦無法補正被告在電視廣告中未盡到告知義務之缺失。
對於此種類似噱頭之電子媒體行銷手法,是否可以只在產品瓶身明示退費規則,而在電子媒體廣告中忽略不提,是否有不實廣告及消費者權益如何保障等問題,都值得注意。
商標具有表彰商品來源之功能,其設計為配合商品特色而具有識別性。商標註冊後,若不具有識別及表彰商品來源之特徵,而失去商標應有之基本功能,依據商標法第63條第4款,不具識別性之商標,無法主張商標專用之權利。商標名稱通用化,即是指原本具有識別性之商標,通常為著名商標,因為社會大眾消費習慣以及認知的改變,變成商品的通用名稱,此時即認該商標失去識別性,失去法律保護。 商標名稱通用化形成之原因不一,可能是企業經營者設計商標時,有意使用社會大眾熟悉之名稱作為商標,也有可能非商標權利人自己故意造成,特別是著名商標,容易流於通用化。例如,「可樂(cola)」一詞由可口可樂(coca cola)公司率先註冊使用,但於消費者心目中已成為特定碳酸飲料之名稱,則不得由可口可樂公司獨占使用;又如火柴盒玩具汽車,為火柴盒大小包裝之玩具,企業經營者以 matchbox 作為該玩具的文字商標,但美國聯邦最高法院認為matchbox屬於該商品之通用名稱,否認其商標權。 實務上判斷商標名稱通用化,以該商標名稱在一般消費者心目中認識的主要意義為標準。一個經過市場行銷之註冊商標名稱,若在消費者心目中屬於商品通用名稱,而非特定商品來源,則表示該商標名稱已不具備商標功能,不受法律保護。
美國擬投入110億美元扶持半導體研發,並成立國家半導體技術中心美國白宮於2024年2月9日宣布從《晶片與科學法》(CHIPS and Science Act)撥款110億美元執行「CHIPS研發計畫」(CHIPS Research and Development (R&D) programs),並將設立投資基金,協助美國新興半導體公司技術商業化發展。 CHIPS研發計畫源係於美國國會於2022年8月通過《晶片與科學法》,提供527億美元的經費支持美國半導體產業,其中390億美元用於補助半導體生產,110億美元用於半導體研發。此次CHIPS研發計畫的具體作法如下: (1)建置國家半導體技術中心(National Semiconductor Technology Center,簡稱NSTC):為CHIPS研發計畫的核心項目,將投資50億美元建置NSTC,協助美國先進半導體研發與設計,確保美國於半導體領域的領先地位。NSTC將向公眾共享設施與專業知識,幫助創新者取得相關專業知識與能力。此外NSTC亦將推動利益團體(Community of Interest),將開放所有利益相關者就NSTC的規劃提供意見。 (2)投資半導體人才(Investing in the Semiconductor Workforce):創建人才勞動卓越中心(Workforce Center of Excellence),以培育、訓練美國半導體產業所需人才,並促進產業界與學術界的合作。 (3)投資其他關鍵領域研發之需求(Investing in Other Key R&D Needs):向美國晶片製造研究所(CHIPS Manufacturing USA Institute)投資至少2億美元,以創建美國首座半導體製造數位孿生研究所(Semiconductor Manufacturing Digital Twin Institute),以降低晶片研發製造的成本,加速創新技術商業化之週期;以及投資3億美元於先進封裝產業,以提升半導體系統之效能。以外亦投資1億美元資助「CHIPS量測計畫」(CHIPS Metrology Program)的29個項目,幫助研發新型測量設備與方法,以滿足為電子產業的技術需求。
中國大陸知識產權局知識發展研究中心於2014年發布2013年度中國大陸全國智慧財產權發展報告知識發展研究中心於今年2014年第二次發布整體中國大陸智慧財產權的發展指標數,該單位往後將持續觀察深入研究並提供報告指標,以反應中國大陸於專利、商標、著作權等智慧財產權的發展狀況,以利引導國家智慧財產權戰略實施,進一步強化推動國家於智慧財產權事業與科技創新研發發展。 報告顯示,中國大陸知識產權局綜合發展指數在2013年有增加趨勢,不論在創造、運用、保護或環境等四項發展指數上,皆有穩定成長趨勢。報告中除地區特徵顯示出智慧財產權的發展與完備外,穩定的數據更突顯整體智慧財產權環境的完善。從世界排名第一的受理發明專利申請82.5萬件、受理通過PCT提交國際專利申請案2.2924萬件、連續12年居世界第一受理商標註冊申請共188.15萬件,以及首度突破百件著作權登記案等,顯示出中國大陸在智慧財產權的整體保護與落實推動。 另外,中國大陸知識產權局不斷在擴大智慧財產權的保護,由2012年至2013年共提升了1.79,侵害假冒偽劣案件上,執法移送與審判起訴案件皆有所成長,顯示出中國大陸對智慧財產權的保護重視與落實。尤其,在整體智慧財產權環境提升與優化上,指標顯示出由2012年至2013年明顯上升5.97,主要是專責服務機構、人員購置的逐年增加與穩定成長之因,亦使智慧財產權整體環境營造有優化、加速與強化的提升。
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).