日本科技政策的制定依據來自日本「科學技術基本法」,該法第九條規定,要求國家在推動科技振興發展上,政府應制訂有關科學技術振興的「科學技術基本計畫」。「科學技術基本計畫」之推動以五年為一期,最近一期為第五期(2016-2020年),該期計畫以人工智慧與資通訊技術為核心,解決各式重要社會課題,打造「超智慧社會」,並命名為「Society 5.0」。 「Society 5.0」明訂日本實現超智慧社會的政策方向,其政策重點聚焦於產業創造與社會變革,並重新架構產業與整個社會的關係,因此,除了強化產業競爭力,實現產業變革以外,「Society 5.0」也規劃解決日本近年社會課題,包括老齡化社會、勞動力不足、能源短缺與自然災害等。而在前瞻性預測上,「Society 5.0」描繪20年後未來人類將生活在為高度電腦化、智慧化環境,為實現該目標,發展物聯網、大數據分析、電腦科學與技術、人工智慧與網路安全等相關科技基礎技術研發與應用,是「Society 5.0」的核心之一。 簡單來說,「Society 5.0」追求以人為中心的新經濟社會,運用高度融合網路虛擬空間及物理現實空間的相關技術,滿足未來人類生活上的各種需求,同步解決經濟發展與社會課題,並以此建構更貼近符合個人需求之社會。
三星電子開發出色弱者使用的顯示器三星電子十六日表示,目前大舉開發色弱者使用的顯示器等新概念顯示器,可令色弱者與正常人一樣享受多媒体功能、增加了色彩保真功能(Magic Vision)的產品「SyncMaster 730C」和「SyncMaster 930C」。 Magic Vision具有將顯示器的紅、綠、青三原色分別分類為十個等級的功能,由此使用者可依照最適合自己的色彩敏感度來調節顯示器的色彩。 三星電子還計劃近期推出具有1500:1的明暗比、6ms(千分之一秒)響應速度、符合人體工學的三重鉸鏈(3-Hinge)底座的顯示器「SyncMaster750P」和具有世界最快響應速度—4ms的顯示器「SyncMaster 930B」。 三星電子強調,明暗比和響應速度的性能大幅提升,將可能終結「液晶顯示器不適合遊戲及動態視頻」這一爭議。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
我國遊戲軟體著作權爭議探討