歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。 個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。 此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。
英國推動「公共緊急警報:行動通訊預警試驗」實證服務為試驗導入智慧防救災各項新興技術與機制,英國國民緊急事務秘書處 (Civil Contingencies Secretariat, CCS) 於2013年秋天分別對北約克郡 (North Yorkshire)、格拉斯哥 (Glasgow) 和薩福克郡 (Suffolk) 三地區進行共三次的「公共緊急警報:行動通訊預警試驗」(Public emergency alerts: mobile alerting trial)。由於英國已有92%民眾具有行動電話,並以隨時得接收訊息為出發點,進行有別於傳統預警系統之公共緊急預警系統試驗。此試驗由國民緊急事務秘書處與O2、Vodafone和EE三間行動網路業者 (mobile network operators) 和地方政府應變單位合作,雖係以行動電話為試驗主軸,但試驗重點則以政府或地方政府應變單位「不知道」民眾個人電話,亦不要求民眾簽署才能取得此次試驗訊息為主。 此三次試驗手段有二,包括「小型區域廣播服務」 (cell Broadcast service, CBS),係以單點對多點發送緊急簡訊,以及「以地區為基礎的簡訊」 (location-based SMS messaging),以群組方式發送簡訊至指定地區用戶,二種發佈緊急訊息的方法為試驗。 北約克郡 (North Yorkshire)主要與EE進行發送緊急水災警報系統,對於廣播訊息發送的時間或調整時間長短以供傳送「泡沫警報」(表訊息多寡)到地域寬廣或數個地區而言,是有效的手段。格拉斯哥 (Glasgow)地區為蘇格蘭最大城市,與O2業者進行最大型的試驗,發送數千緊急訊息給民眾。而薩福克郡(Suffolk)則是由於該區不僅於市中心具兩個火車站,遊客也眾多,因此試驗場域以住商混合住宅區及處於該區的人民為主。除小型區域廣播服務和以地區為基礎的簡訊外,薩福克郡也與社交網路Twitter合作,共傳送三種訊息試驗。 透過上述試驗,公共緊急警報:行動通訊預警試驗計畫報告也提出針對隱私與對於電信服務業者於災害發生當下之通訊服務義務未來應制訂相關規範,以及應統一發送訊息之通訊警報協定標準等建議。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
眾所矚目的LG對廣達權利金訴訟案有了初步的進展今年1月16日(週三),美國聯邦最高法院將韓國LG電子公司與台灣廣達(Quanta)電腦公司的訴訟案排入審判的程序之中,並預計今年六月底左右會有相關的判決結果產生。此案件之所於引人注目,主要是本案爭議的內容在於LG公司將其記憶體相關的專利權授權給美國Intel公司。而台灣廣達公司自Intel公司購買部分經LG授權的零組件,並用來製造筆記型電腦。 LG公司發現此情形之後,遂向美國法院控告廣達公司的行為侵害該公司的專利權,LG公司主張其授權並不包含對Intel公司以外的廠商,所以廣達公司的行為侵害該公司的權利;但廣達公司則主張Intel公司已取得授權,有權對外銷售,因此廣達公司的行為是合法的行為。 由於美國地方法院判決對LG有利,所以廣達公司不服因而提起上訴,本案也已經進入聯邦最高法院的訴訟程序,最後判決結果如何,將影響未來專利權擁有者與被授權者之間的關係,究竟收取權利金的範圍是否及於供應鏈或中下游的廠商等,成為眾人關注的焦點,也因此相關產業人士皆十分關注本案的發展。