賭博事業之經營是否應由政府獨占之議題,已陸續在歐洲國家產生爭議問題。2007年3月,義大利禁止於英國取得經營賭博事業執照之Stanley公司至義大利提供賭博服務,因此,義大利法院請求歐洲法院判決,以確定此一行為是否違反歐盟自由貿易原則。隨後,歐洲法院做出判決,認定義大利法律禁止未於義大利取得經營執照之公司在義大利境內經營賭博之規定,違反歐盟競爭法及歐盟條約第49條之規定。
2007年7月中旬,法國最高法院逆轉了過去禁止Malta’s Zeturf於法國經營經營賭博的見解,而遵循歐洲法院之判決結果,認為禁止賭博事業係違反了歐盟競爭法,以及歐盟條約第49條保障境內服務自由流通之規定,並基於上述理由判決Malta’s Zeturf取得於法國經營線上賭博遊戲之權利。法國法學專家Credric Manara以為,最高法院該判決將可能打開原來由政府獨占的賭博市場,而讓賽馬及其他運動賭博遊戲能擴及其他歐洲國家。
法國該向判決卻顯示了法國刑法禁止賭博的規定將無法限制歐盟條約中所保障的自由流通原則,然而,這樣的結果,卻也考驗了以刑法禁止賭博的國家對於法規衝突應如何解決以為之因應。
本文為「經濟部產業技術司科技專案成果」
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
國際產業創新合作策略實例 – 歐盟之歐洲科技與創新機構(EIT) 日本修訂《建築節能法》,加強住宅、建築物之節能措施日本政府為實現2050淨零碳排目標,內閣於2022年4月22日公布《建築物のエネルギー消費性能の向上に関する法律》(譯:有關建築物能源使用效率提升的法律,下稱本法)修正案,加強住宅、建築物之能效提升措施。本次修正內容,主要包含: 擴大本法適用對象 因本法現僅規範大型規模建物(面積2,000平方公尺以上)及中型規模建物(面積300平方公尺以上,未滿2,000平方公尺);故修正案定2025年起,將所有新建的小型規模建築(面積未滿300平方公尺)及住宅均納入本法規定,不僅要求外牆和屋頂需增厚隔熱材質,並應使用高能效的空調及照明設備,以符節能標準。 擴大領先者計畫(Top Runner program) 以淨零耗能住宅(Zero Energy House, ZEH)及零耗能建築(Zero Energy Building, ZEB)為目標,最遲到2030年逐步提高實施節能標準。 實施節能裝修融資政策 國土交通省為促進既有建築物節能改造及鼓勵引進太陽能發電的新機制,將由住宅局編列預算,透過日本住宅金融支援機構(Japan Housing Finance Agency, JHF)辦理節能裝修低利息融資。
Google提供免費大量的專利及商標資料美國專利商標局(下稱USPTO)於6月2日和Google簽訂一協議,為期兩年Google將免費協助USPTO提供超過10TB(terabytes)大量的專利及商標相關資訊,提供使用者一次下載大量資料。其下載網站為http://www.google.com/googlebooks/uspto.html,該網站載明,所有的原始資料都來自於USPTO,Google未修改任何資料,只將檔案轉為zip壓縮檔。 早期專利及商標的資料是由使用者付費後方可由政府的DVD取得,所以公司往往花費龐大的費用在於取得所需要的資料。 USPTO表示,IP群體渴望USPTO可提供大批機器可閱讀的格式,然而USPTO未具備相關的技術能力。目前此協議是過渡的解決方案,USPTO正發展策略,希望未來能讓合作承包商獲得大量專利商標相關資料,並提供給大眾使用。 Google工程經理Jon Orwant表示,Google非常高興能與USPTO合作,以促進專利及商標資料更具存取性(accessible)及有用性,更重要的為,使公開的資料更容易蒐集與分析。 為可經由Google下載相關專利及商標資料,包括已獲證圖像(grant images),已獲證全文(grant full text),已獲證目錄資料(grant bibliographic data),已公開申請案(published applications),轉讓(assignment),維護費用事項(maintenance fee events),USPTO Red Book及分類資料(classification information)等。USPTO表示,未來將與Google再合作提供額外的資料,包括專利及商標申請歷史檔案及其相關資料。