賭博事業之經營是否應由政府獨占之議題,已陸續在歐洲國家產生爭議問題。2007年3月,義大利禁止於英國取得經營賭博事業執照之Stanley公司至義大利提供賭博服務,因此,義大利法院請求歐洲法院判決,以確定此一行為是否違反歐盟自由貿易原則。隨後,歐洲法院做出判決,認定義大利法律禁止未於義大利取得經營執照之公司在義大利境內經營賭博之規定,違反歐盟競爭法及歐盟條約第49條之規定。
2007年7月中旬,法國最高法院逆轉了過去禁止Malta’s Zeturf於法國經營經營賭博的見解,而遵循歐洲法院之判決結果,認為禁止賭博事業係違反了歐盟競爭法,以及歐盟條約第49條保障境內服務自由流通之規定,並基於上述理由判決Malta’s Zeturf取得於法國經營線上賭博遊戲之權利。法國法學專家Credric Manara以為,最高法院該判決將可能打開原來由政府獨占的賭博市場,而讓賽馬及其他運動賭博遊戲能擴及其他歐洲國家。
法國該向判決卻顯示了法國刑法禁止賭博的規定將無法限制歐盟條約中所保障的自由流通原則,然而,這樣的結果,卻也考驗了以刑法禁止賭博的國家對於法規衝突應如何解決以為之因應。
本文為「經濟部產業技術司科技專案成果」
英國資訊委員辦公室(Information Commissioner's Office, ICO)2018年9月就監理沙盒為初步公眾意見徵詢,以瞭解其可行性。ICO監理沙盒之建立係依據英國2018-2021年科技策略(Technology Strategy for 2018-2021),並參考英國金融行為監理總署(Financial Conduct Authority, FCA)已成功發展之沙盒機制。ICO將提供組織於安全可控且不排除資料保護法規適用的環境下,以創新方式應用個資於開發創新產品與服務,並提供關於降低風險與資料保護設計(data protection by design)的專業知識和建議,同時確保組織採取適當安全維護措施。徵詢重點分為六部分: 障礙和挑戰(Barriers and Challenges):歐盟一般資料保護規則(General Data Protection Regulation, GDPR)或英國2018年資料保護法(Data Protection Act 2018, DPA18)之適用,以及ICO之監管方法,是否造成組織以創新方式應用個資於開發創新產品與服務之障礙或挑戰。 適用之可能範圍(Possible scope of an ICO Sandbox) 了解參與益處(Understanding the benefits of involvement) 機制(Sandbox mechanisms):於監理沙盒機制下不同階段提供指導,初期就如何解決資料保護相關問題提供非正式之指導(informal steers);中期提供法律允許與具適當保護措施之監管指導,如對參與者進入沙盒期間內非故意違反資料保護原則之行為,不會立即受到制裁之聲明函(letters of comfort)、確認組織未違反相關資料保護法規等;以及針對新興技術和創新特定領域,提供解決資料保護挑戰之預期指導(anticipatory guidance),如訂定相關行為準則(code of conduct)。 時機(Sandbox timings):包含開放申請進入沙盒時點、進入模式、是否彈性因應產品開發週期、測試階段期間等。 管理需求(Managing Demand):如設定優先進入沙盒領域、類型、設定參與者數量上限等。 該諮詢於10月12日結束,2018年底將公布結果,值得持續追蹤,以瞭解ICO監理沙盒未來之發展。 ICO亦接續於10月建立監管機關業務和隱私創新中心(Regulators’Business and Privacy Innovation Hub),與其他監管機關合作提供資料保護之專業知識,以確保法規與未來的技術同步發展;該中心也將與ICO監理沙盒共同推動,支持組織以不同方式使用個資開發創新產品和服務。
日本產業活力再生法等修正案公布施行日本政府為求讓日本經濟發展能因應當前國際經濟現勢的結構性變化,相關產業活動有進行革新之必要;因此,日本政府提出「促進我國產業活動革新之產業活力再生特別措施法等法律部分修正案」(以下簡稱修正案),修正案係採包裹立法方式,修正「產業活力再生特別措施法」(簡稱產活法)、「礦工業技術研究組合法」(簡稱研究組合法),以及「產業技術力強化法」(簡稱產技法)等法律。修正案於今(2009)年4月22日經日本國會立法通過,同月30日公布(平成21年4月30日法律第29号),並於同年6月22日施行。以下針對三部法律中之主要修正項目簡介之。 首先,在產活法中,主要修正處是日本政府將出資與民間合作,成立「產業革新機構」股份有限公司,目的在結合公私資源,投資創新活動,包括集結最尖端基礎技術以協助進入應用開發階段,建立連結創投資本、新創企業與擔任將技術事業化之大企業的機制,以及將有技術優勢但埋沒大企業中之技術加以組合,並集中投入人力及資金以發揮價值。其次,在研究組合法中,主要修正處包括,擴大研究組合中可研發主題之技術範圍,放寬加入組合成員之資格,賦予研究組合組織變更、分割合併之可能。最後,在產技法中,主要修正處在於讓國有研發成果可以低於市價之價格實施,以促進將成果活用轉化成為產業實用之支援。日本政府之相關革新作法,其實際成效及對我國之啟發值得後續加以關注。
美國修正通過外國情報偵察法(FISA)美國近期通過「外國情報偵察法」(Foreign Intelligence Surveillance Act, FISA)之修正案,其中,原先於1月份到期的第七章(Title VII)702條款(Section 702),重新延長授權6年,直至2023年12月31日。 此法案於1978年生效,為美國第一個要求政府須先獲得法院許可,始能進行電子監視的法律。法案宗旨係為平衡國家安全以及人民權利,基於憲法第四修正案對人民的保障,使身處美國領土內的人民免於被恣意監視,國家在通常情況下,須獲得外國情報偵察法院(Foreign Intelligence Surveillance Court, FISC)搜索票(warrant)才可對人民進行搜查。 本次法案修正通過後,使聯邦調查局能夠持續使用情報數據資料庫,以獲取有關美國人的信息,但法案新增要求聯邦調查局在預測性刑事調查中(predicated criminal investigation)如要索取與國家安全無關的內容,必須事先經FISC法院審查許可(court order)。 因911恐攻事件後出現的反恐需要,2008年增訂第七章702條款為FISA的正式條款,原本在今年1月到期,法案修正通過後,此條款延長授權6年。目的為美國公民提供隱私保護,禁止政府針對美國公民和位於美國境內的外國人為監視對象;僅處於國外的外國人,涉及外國情報資訊才可被列為本條進行監視的目標。允許情報部門,在三個政府部門(外國情報偵察法院,行政部門和國會)的監督下,收集關於國際恐怖分子,武器散布者以及其他位於美國境外的重要外國情報。 此項修正案保留702條款的操作靈活性,並加入了一些增強隱私措施及要求。惟,受質疑且具爭議的是,702條款條文內容規範,允許美國政府的情報機構--國家安全局(National Security Agency, NSA)基於該條款,例外不需法院搜索票,可向Google、Apple、微軟、Facebook或電信業者等美國企業蒐集、調閱國外非美國人用戶的海外通訊內容(包含電子郵件、電話、其他私人信息等),當這些被監聽的國外用戶之通訊對象係涉及美國人時亦同;意即,若美國人曾接觸被鎖定的國外對象,也會被納入調查並取得通訊紀錄等個資,且禁止業者通知受影響的用戶。曾有國會參議員試圖修改此法案,加入隱私保護條款,但最終並未獲多數同意。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。