輝瑞在中國獲得威而鋼專利戰爭的勝利 Pfizer Emerges Victorious in China Viagra Patent Battle

  在未來三年,中國藥品市場將以每年20-25%的成長率快速成長,並且預估可在2010年成為世界第五大藥品市場。在中國加入世界貿易組織(World Trade Organization, WTO)之後,其廣大的市場以及商機吸引了許多海外藥品製造商的興趣。然而,因為中國對智慧財產保護的社會環境非常複雜,使得本土製造的學名藥以及複製產品仍然主宰其藥品市場。

 

  在歷經六年的法律戰爭後,輝瑞終於在中國成功地捍衛其關於陽痿治療藥物Viagra的專利權。根據報導,北京高等人民法院已駁回來自12家本土製藥廠所提出的專利異議案,並且同意授予輝瑞對於Viagra的專利保護至2014年為止。

 

  輝瑞於1994年提出以Sildenafil (Viagra)治療陽痿的專利申請。歷經七年的審查,中國知識產權局於2001年核准該專利申請案。隨後,12家本土製藥廠提出了該專利的異議案,而中國知識產權局的專利檢定所於2004年判定此專利無效。輝瑞很快地對此決議提出異議,2006年,北京中級人民法院作出對輝瑞有利的判決。雖然前述之本土製藥廠商針對此判決向北京高等人民法院提出訴願,但北京高等人民法院於週四正式駁回訴願,並指示SIPO撤銷先前的專利無效判定。

 

  這個判決結果應有助於Viagra站穩中國的陽痿治療藥物市場。然而,輝瑞在中國仍然面臨許多挑戰。今年初,該公司輸掉一個關於Viagra的商標侵權官司。而輝瑞目前正上訴中。

相關連結
※ 輝瑞在中國獲得威而鋼專利戰爭的勝利 Pfizer Emerges Victorious in China Viagra Patent Battle, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2404&no=57&tp=1 (最後瀏覽日:2025/12/31)
引註此篇文章
你可能還會想看
美國和歐盟合作推動統一優良臨床試驗規範

  美國聯邦食品藥物管理局(U.S. Food and Drug Administration)和歐洲醫藥局(European Medicines Agency)在2009年7月31日共同公佈了一項名為優良臨床試驗行動(Good Clinical Practices Initiative)的合作計畫,期能藉由該計畫,使得不論是在美國或歐盟,所有臨床試驗之執行,都有遵守相同且適當的規範。   在醫藥品上市申請的實務中,因為大部份的醫藥品都會企圖向廣大的歐美市場扣關,同樣的臨床試驗通常也會分別提交到兩地的醫藥品上市許可申請程序中。故若兩地主管機關可以合作訂出統一的優良臨床試驗規範,則可避免因重複審查所造成的資源浪費,申請者也可以因為統一的規範而加速其在兩地審查的程序,且在跨國資訊交流整合下,也可為臨床試驗研究的參與者提供更好的安全基礎。   此次美國聯邦食品藥物管理局,和歐洲醫藥局合作之優良臨床試驗行動的幾個主要目標如下: 一、定期交換有關優良臨床試驗之實務操作資訊:交換的資訊包括(1)彼此的優良臨床試驗(Good Clinical Practices, GCP)查核計畫,以了解有那些臨床試驗或地點是對方會去查核的,就不需要重覆查核;(2)彼此受理的上市申請案件中,有關GCP的如科學上的建議或上市申請的結果等;以及(3)彼此執行GCP查核之結果。二、共同執行優良臨床試驗審查:藉此了解對方之GCP查核程序,並進而信賴彼此之程序,也藉由共同執行時之交流,提昇彼此查核之技巧,及精進查核之程序。 三、合作增進優良臨床試驗規範:藉由對彼此GCP相關法規、指導原則、和政策等的交流及了解,找出現有規範中可予以改進之處,以增進臨床試驗研究的品質。   自2009年9月1日起,此項合作行動將首先開始一個為期18個月的先期行動,在此先期行動結束後,兩主管機關將會共同發布一份包含其整體行動計畫,及雙方就各自既有法規或程序應予以調整部分。

費城將對含糖飲品課徵稅捐

  費城市議會於105年6月17日以13票對4票通過對含糖飲料每盎司課徵1.5美分的稅,預計於106年1月正式實施。   由於含糖飲料,容易導致肥胖及糖尿病,尤其在費城有68%的成人與41%的孩童過胖,此法案目的即在於勸阻消費者將多餘的錢用來購買這些不健康的飲料,希望能藉此幫助他們更健康。此法案通過後,估計每瓶裝兩公升的飲料及六盒裝的蘇打水各將漲價1美元左右,但是牛奶、新鮮水果或蔬菜含量50%以上的飲料則不在課稅範圍。此外,那些可以讓消費者自己添加糖的飲料,譬如咖啡,也不在課稅範圍,這意味著運動飲料、糖水、罐裝咖啡以及已添加糖的茶類都將被課稅,故有稱之為「汽水稅」。   依據費城財政局預估,汽水稅將使市府稅收增加9,100萬美元,預計運用在學前托兒班,學校,圖書館,娛樂中心,及其他公共場所,稅收也將資助抵免販售健康飲品企業的稅收。市長 Jim Kenny 也公開支持這項稅收,並在法案通過後表示這項稅收對於該市的社區及教育系統將會帶來歷史性的貢獻。   根據費城市新聞網(Philly.com)於16日報導:「這項稅收的徵收對象為飲料經銷商,目前尚無法統計將有多少稅收能回饋給消費者,但是估計12盎司的飲料約徵收18美分,2公升的飲料約徵收1美元,以及12瓶裝的飲料約徵收2.16美元。」。為此,飲料業者表達激烈的反對,並在法案通過後發表聲明表示將採取法律行動,並表示此項稅收並未考慮到低收入戶以及消費者對於無熱量飲料的選擇,所以是不公平的。而且這項稅收不僅影響費城人,對於所有美國人來說具有歧視性且極不受到歡迎。儘管美國飲料協會耗費了大筆的廣告費用來阻擋這項稅法的通過,費城市議會最後仍通過這項法案。   類似法案早在2014年,加州柏克萊市就已通過。只是,費城成為全美第一個針對含糖飲料課稅的大城市,其造成之影響較為顯著,目的在於減少含糖飲料的消費。至於其他城市,包括San Francisco(舊金山) 和 Boulder, Colo.(科羅拉多波德),正在考慮相似的立法,不過至今尚未通過。

歐盟2019電子政府基準報告

  歐盟執委會(European Commission, EC)於2019年10月18日發布電子政府基準報告(eGovernment Benchmark 2019: trust in government is increasingly important for people)。電子政府基準是歐盟的年度檢測工具,用以確認公部門中資通訊技術使用狀況,亦是歐盟2016-2020年的重點政策之一:2016年4月,歐盟執委會發布「歐盟e政府四年行動計畫」(EU eGovernment Action Plan 2016-2020),歐盟應致力落實「公共行政現代化」、「跨境數位行動服務」和「加強公部門與公民和企業的數位互動」等三面向。電子政府基準報告即因應此一政策方向而生。   電子政府基準的評測指標有四:以使用者為中心(User centricity)、透明度(Transparency)、跨境移動(Cross-border mobility)、其他關鍵促成因素(Key enablers)。報告中評估2019年總體表現最佳的國家是馬爾他、奧地利等;立陶宛和芬蘭等國則為其次;表現低於平均者則多為東南歐國家。報告中亦提到,現階段公民已十分容易在機關官網上取得所需資訊,但相較於提供給一般公民的服務,機關官網對企業提供之服務通常更加完整及清楚。另外,在推行各項電子政府措施時,公民對政府的信任益發重要。唯有公民信任該機關,包含對機關安全在線服務、個人資料透明度、公共網路安全等的信賴,機關數位化改革才能常態運作。因此,電子政府的發展是建立在人們信任相關數位服務,並與政府交流時更容易知悉並利用該服務。   再觀我國電子化政府之發展,自民國87年至今已進入第五階段。初期致力建設政府骨幹網路和電子認證、90年代持續深化及擴大政府網路應用,並推動10大旗艦計畫實現網路政府主動、分眾、持續及紮根之服務。101年後建構電子化政府之設備、網路和應用服務,發展資訊服務系統整合、全程服務及跨部門協調。近期分別有「第五階段電子化政府計畫-數位政府」和「服務型政府推動計畫」,以資料驅動、公私協力、以民為本之核心理念,透過巨量資料、開放資料和服務個人化等工具,發展跨機關一站式整合服務及打造多元協作環境,落實數位政府服務。

新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

TOP