歐盟法院於2008年1月29日判決(Az. C-275/06)指出,基於歐盟現行相關指令規範,並未強制或禁止電信服務提供者有提供客戶或使用者之個人資料的義務。
本案源起於西班牙著作權人團體Productores de Música de España對電信服務提供者Telefónica提出之著作權侵害訴訟。原告Productores de Música de España主張被告Telefónica有義務提供其網路使用者之身分,因該網路使用者乃透過被告所提供之連線服務,連線至檔案分享平台KaZaA,並提供下載違反著作權之音樂檔案。被告Telefónica 則根據西班牙現行資訊社會及網路使用之相關規範,拒絕提供該客戶之個人資料。根據西班牙法令,僅有在刑事犯罪追訴或有明顯侵害公益之情事下,始允許電信服務提供者提供客戶之個人資料。
西班牙法院因此向歐盟法院提出預先決定(Vorabentscheidung)*之請求,請其確認基於現行歐盟法規,各會員國是否應強制民事訴訟程序之當事人,即本案的電信服務提供者,有提供足以確認其使用者身分之資料的義務規定,以達有效遏止著作權侵害之目的。歐盟法院在分析各相關指令如電子商務、隱私權保障等相關規定後,認為歐盟現行法規並未就此議題有強制規定,各會員國應於考量隱私權以及其他權利之保障,且在不違法歐盟規範前提下,自行決定是否在國內制定類似之規定。
反觀德國在落實歐盟「儲存通訊資訊指令(Directive 2006/24/EC)」於國內法後,則允許在符合特定情況下,當事人於民事訴訟程序中有提供個人資料之義務。該法令因存有違反隱私權保護之爭議,通過後迄今仍有極大之反對聲浪。
*因歐盟條約規定,若會員國法院對於條約解釋、共同體組織與歐洲中央銀行行為之有效性與解釋以及執委會所設立的機構的章程之解釋有疑問,且會員國法院認為上述問題之決定於判決之作成有其必要,得申請歐洲法院裁決,此為預先決定。
歐盟普通法院(EU General Court)於2024年6月5日宣告McDonald’s(後稱麥當勞)在與競爭對手愛爾蘭速食品牌Supermac's的訴訟中,失去其「Big Mac」(又稱「大麥克」)之部分商標權,即無法將「Big Mac」商標用於雞肉三明治等家禽類商品與餐廳內用及得來速外帶等餐飲服務上。 此案件起因於Supermac's公司拓展事業版圖進入歐盟市場,將公司品牌名稱「Supermac's」申請註冊歐盟商標,而麥當勞則主張消費者可能與其於1996年取得之「Big Mac」歐盟商標產生混淆誤認。然而,Supermac's於2017年向歐盟智慧財產局(European Union Intellectual Property Office,後稱EUIPO)以「麥當勞未真實使用(genuine use)『Big Mac』商標逾五年」為由,申請廢止麥當勞之「Big Mac」註冊商標。EUIPO於2019年廢止「Big Mac」商標於部分類別的註冊,惟EUIPO仍允許麥當勞仍可將「Big Mac」商標用於雞肉三明治、其他家禽產品及餐廳服務上。 爾後,Supermac's向歐盟普通法院提出上訴,而歐盟普通法院於2024年6月認為,麥當勞未能證明其於連續五年間有將「Big Mac」商標「真實使用」於雞肉三明治、家禽商品或餐廳服務的使用程度(例如:銷售量、商標使用期間長短及使用頻率等),故認定麥當勞不得再將「Big Mac」商標用於雞肉三明治、家禽商品或餐廳、得來速或外帶等服務上,惟本案尚未確定,而可再就法律問題上訴,故仍可持續關注本案的後續發展。 企業可從本案了解到當品牌標識成功註冊為商標後,務必留意各國所規範之連續使用年限(例如若連續五年未使用歐盟商標,則可能有被商標廢止之風險),以及明確留存足以佐證「真實使用」於註冊所指定之類別與品項之使用證明,以維護品牌商標之保護。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
複製牛肉即將上桌?-複製動物作為食品之歐盟規範觀察