回歸修理/再製造判準?談日本最高裁事件判決

刊登期別
第20卷,第1期,2008年01月
 

本文為「經濟部產業技術司科技專案成果」

※ 回歸修理/再製造判準?談日本最高裁事件判決, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2815&no=64&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)2014年8月14日在北京召開成員會議

  亞太經濟合作組織(Asia-Pacific Economic Cooperation, APEC)糧食安全政策夥伴關係機制(Policy Partnership on Food Security, PPFS)成員國、APEC秘書處、APEC工商諮詢理事會秘書處、糧農組織代表在北京召開全體成員會議,就亞太糧食安全相關議題與糧食安全政策夥伴關係機制(PPFS)建構進行討論。PPFS為政府部門與民間組織、企業溝通對話之平台,係APEC解決亞太糧食安全所建構之機制,茲就本次會議作成之重點分述如下: 1.亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)全於會中作成3項倡議:第一,加強APEC成員糧農政策對話與交流,協商區域合作的規劃和措施。第二,降低貿易和投資成本,消除貿易壁壘促進糧農貿易。第三,加強各政府、產業與個體農民交流,促進私部門參與糧食安全之商業模式,以利亞太糧食安全之永續。相關糧食安全議題及合作方向包括:糧食生產與技術移轉跨國合作;糧食儲備、供應鏈及降低糧損技術之交流與合作和貿易合作、投資與基礎建設等。 2.本次會議除作成前述宣示性倡議外, 另通過「APEC減少糧食損失和浪費行動計畫」、「APEC糧食安全商業計畫」、「APEC增強糧食標準與質量安全互通行動計畫」、「2020糧食安全路線圖」等修訂文件。其中,「2020糧食安全路線圖」,提及PPFS將致力於降低亞太區域之糧食農損失,並宣示於2020年降低農損總量10%之具體目標(以2011-2012年度之農損總量為比較基準)。

IBM嘗試新方法支持開放原始碼

  IBM公司在2日拉斯維加斯舉行世界夥伴(PartnerWorld)會議時,宣布提倡開放原始碼創新的新措施,包括成立求職應徵者資料庫,以及一項電子學習計畫。這座資料庫預定今年第三季推出,屆時會把具有開放原始碼技術的大學生所投的履歷表一一編列成目錄。想被納入資料庫的資格,包括曾經參加IBM校園人才培訓計畫(Academic Initiative)中級程度以上,並通過IBM開放原始碼專業資格考試的人士。該資料庫提供IBM的企業客戶與商業夥伴檢索。起初,此資料庫只涵蓋北美洲地區,但IBM打算將來擴大推廣到世界其他地區。    該公司也將透過提供IBM校園人才培訓計畫,提供各校所需的中介軟體及硬體,而Hubs計畫本身不打算收費,或只酌收少許費用。第一座這種中心預定春季在德州A&M大學成立。    IBM另外在PartnerWorld宣布,計劃今年與商業夥伴共同成立100座新的「創新中心」( innovation centers)。藍色巨人先前已承諾投資1.5億美元開辦這類中心,讓系統整合業者、獨立軟體公司、附加價值流通業者以及解決方案服務提供者藉此取得IBM的技術與設備,以協助他們測試並最佳化自家產品。其構想是協助這些夥伴加速產品上市,並降低產品開發費用。自2004年推出以來,IBM已在北美和歐洲成立大約40座這種中心。

德國禁種MON810爭議,行政法院裁定有理由,支持主管機關禁種決定

  跨國農業生技公司Monsanto研發的MON810品系抗蟲基因改造玉米,於今(2009)年4月中旬遭到德國農業生技的主管機關-聯邦營養、農業與消費者保護局(Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, BMELV)援引歐盟基因改造生物環境釋出指令(EU-Freisetzungsrichtlinie)中的防衛條款,加以禁種。   雖然Monsanto隨即對BMELV此項決定提出行政訴訟,但Braunschweig行政法院在5月初作出的暫時性裁定,支持了BMELV此項決定。法院基於兩大理由,裁定BMELV之禁種決定並非無據:(1)只要有新的或進一步的資訊出現,支持基因改造作物可能會對人體或動物健康造成損害,即可支持主管機關作出禁止種植已經取得歐盟上市許可的基因改造作物之決定之論據,不需要存在有必然會有風險的科學知識。(2)據此論據進行風險調查及風險評估,乃主管機關之執掌,主管機關對此有裁量權(Beurteilungsspielraum),從而,法院介入審查該行政決定的重點,在於主管機關是否已為充分的風險調查、有無恣意論斷風險。本案目前尚非終局之決定,Monsanto仍可對於此項裁定提出抗告。   在歐盟,基因改造生物的上市需透過歐盟程序為之,一旦歐盟執委會允許某一基因改造生物的上市,該基因改造生物原則上即可在全體歐盟會員國推廣銷售,包括種植。唯歐盟環境釋出指令例外容許會員國得於一定條件下,援引防衛條款主張已通過歐盟審查的基因改造生物,對於其境內環境或人體與動植物健康有負面影響,從而禁止特定已取得歐盟上市許可的基因改造生物於其境內流通。防衛條款的動用屬例外情形,且須定期接受歐盟層級的審查。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP